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Abstract: - By combining wavelet transform (WT ) with fractal theory, a novel approach is put forward to detect 
early short-circuit fault. The application of signal denoising based on the statistic rule is brought forward to 
determine the threshold of each order of wavelet space, and an effective method is proposed to determine the 
decomposition adaptively, increasing the signal-noise-ratio (SNR). In a view of the inter relationship of wavelet 
transform and fractal theory, the whole and local fractal exponents obtained from WT coefficients as features are 
presented for extracting fault signals. The effectiveness of the new algorithm used to extract the characteristic 
signal is described, which can be realized by the value of the fractal dimensions of those types of short-circuit 
fault. In accordance with the threshold value of each type of short-circuit fault in each frequency band, the 
correlation between the type of short-circuit and the fractal dimensions can be figured to perform extraction. 
This model incorporates the advantages of morphological filter and multi-scale WT to extract the feature of 
faults meanwhile restraining various noises. Besides, it can be implemented in real time using the available 
hardware. The effectiveness of this model was verified with the simulation results. 
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1   Introduction 
Although utility industry restructuring, increasing 
system capacity needs, and technology advancements 
are leading in a widespread introduction of 
distributed generation, this does not mean that the 
traditional model of centralized electric power 
generation and delivery is abandoned. Moreover, the 
introduction of natural gas, the deregulation of the 
electricity market, environmental concerns and 
specific investment policies lead to a simultaneous 
development of large scale units  with small 
customer-specifiedunits.Technological mprovements 
lead to lower cost per power both for small and large 
units, while taking into consideration emission 
reduction policies. 

But, irrelevant from the energy system 
expansion and the extent of the distributed generation 
penetration, power quality issues and security 
constraints for the network, the connected devices 
and the people, are in the first priority of the 
transmission and distribution system construction. 
This demands a proper selection and combination of 
security equipment. For large disturbances, which are 
triggered by some initial fault, the network can be led 
to instability in case of human fault, malfunction or 
unsuitable equipment. It is duty of power system 
analysts and planners to specify the proper equipment 
selection by carrying out simulation analysis of all 
possible faults. The system behavior before and 

during a possible fault has to be monitored and 
analyzed.  

Furthermore, the initial network structure was 
based on the basis of carrying out specific load 
demands and power generation capacities. The 
reconstruction of the power generation system may 
violate specific security limits such the thermal rating 
of the network lines in case of a short circuit fault. 
The magnitude of a short-circuit current in a 
three-phase a.c. system (maximum or minimum 
short-circuit current) at any location, depends 
primarily on the network configuration, the 
generators and the motors in operation and 
secondarily on the operational stage of the network 
before the short circuit. This requires the network 
examination in every system expansion concerning 
the generating or the active and reactive power 
consuming units because there may needed a 
corrective action in certain constrained systems. 

Short-circuit is one of the most frequent case of 
external faults. When a power device works under 
short-circuit condition, it is subjected to high surge 
current with full anode-cathode voltage. After  a 
short delay time , if short-circuit mode remains 
applied, the power device may he driven out of its 
Safe Operating Area (SOA) and may be destroyed. 
Delay time is usually implemented in power device 
protection in order to avoid unwished power switch 
turn-off due to transient state conditions. 
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The wavelet transform provides such a 
framework for the analysis of a signal that can locate 
energy in both the time and scale domain close to the 
theoretical bound given by the Heisenberg’s 
uncertainty principle. Thus, multiresolution analysis 
based on wavelet transform is an excellent tool in 
providing spatial-frequency decomposition[1]-[5]. 
Fractals are mathematical sets that process high 
degrees of geometrical complexity and can model 
numerous natural phenomena[6], [7]. Fractal provides a 
proper mathematical framework to study the 
irregular and complex shapes that exist in nature. An 
essential feature of fractal geometry is that it enables 
the characterization of irregularity that may not be 
treated generally in Euclidean geometry.  

In this paper, an alternative approach is 
proposed, which combines the advantages of the WT 
with the ones from the fractal dimension (FD) 
analysis, in order to achieve superior performance in 
the early detection for short-circuit fault. In 
particular, the efficiency of the FD analysis is 
transferred to the WT domain as a means that values 
the WT coefficients according to their significance in 
the signal structure. 
 
 
2   Wavelet  transform and fractal 
theory 
 
2.1 WT-Based multiresolution analysis 
The mathematics of the wavelet transform were 
extensively studied and the multiresolution analysis 
was introduced by Mallat. Basically, a wavelet is a 
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where )(tψ is called the mother wavelet, the asterisk 
denotes complex conjugate, a and (b Rba ∈, )are 
scaling (dilation) and translation parameters, 
respectively. The scale parameter a will decide the 
oscillatory frequency and the length of the wavelet, 
the translation parameter b will decide its shifting 
position. 

In a practical application, we will use the 
discrete wavelet transform (DWT) instead of the 

CWT. This is implemented by using discrete values 
of the scaling parameter and translation parameter. 

To do so, set and , then we get    
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where Znm ∈, , and  m indicating frequency 
localization and n indicating time localization. 

Generally, we can choose and 20a = 10 =b . This 
choice will provide a dyadic-orthonormal wavelet 
transform and provide the basis for multiresolution 
analysis. 

In MRA, any time series can be completely 
decomposed in terms of the approximations, 

provided by scaling functions

)(tx

)(tmφ  and the details, 

provided by the wavelets )(tmψ  , where )(, tnmφ  and 
)(, tnmψ are defined as the following: 
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The scaling function is associated with the 

low-pass filters with filter coefficients  { }Znnh ∈),( , 
and the wavelet function is associated with the 

high-pass filters with filter coefficients{ }Znng ∈),( . 
The so-called Two Scale Equations (TSE) give rise to 
these filters 
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There are some important properties of these 
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 Filter  is an alternating flip of the filter , 
which means there is an odd integer such that 
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Daubechie gives a detailed discussion about the 
characteristics of these filters and how to construct 
them. The decomposition procedure starts with 
passing a signal through these filters. The 
approximations are the low-frequency components of 
the time series and the details are the  high-frequency 
components. 
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Multiresolution analysis leads to a hierarchical and 
fast scheme. This can be implemented by a set of 
successive filter banks as follows. Considering the 
filter bank implementation in (5),(6) and (7), the 
relationship of the approximation coefficients and 
detail coefficients between two adjacent levels are 
given as 
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where and represent the approximation 
coefficients and detail coefficients of the signal at 
level 

jcA jcD

j , respectively; and are the 
low-pass and high-pass filters; k  is the coefficient 
index at each decomposition level. 
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In this way, the decomposition coefficients of 
MRA analysis can be expressed as 
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where is called the approximation at level i , 

and  is called the detail at level i . Since both 
the high pass filter and the low pass filter are half 
band, the MRA decomposition in frequency domain 
for a signal sampled with the sample frequency can 
be demonstrated in the down sampling with a factor 
of 2. 
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2.2  Fractal dimension theory  
 
The term “fractal dimension” can more generally 
refer to any of the dimensions commonly used for 
fractals characterization (e.g., capacity dimension, 
correlation dimension, information dimension, 
Lyapunov dimension, and Minkowski-Bouligand 
dimension). In other words, the FD is a measure of 
how “complicated” a self-similar figure is. To this 
end, the FD can be considered as a relative measure 
of the number of basic building blocks that form a 
pattern. Consequently, the FD could reflect the signal 
complexity in the time domain. This complexity 
could vary with sudden occurrence of transient 
signals, such as short-circuit fault signal; hence, the 
FD could provide a means that tracks the location of 
the fault signal in the time series. It must be noted that 
the estimation of the FD adopted here is derived from 

an operation directly on the signal and not on any 
state space. This means that the data series does not 
have to be embedded into higher dimensional space 
for the FD estimation; hence, the FD has fast 
computational implementation. 
 
2.2.1  Katz’s definition of FD 
According to Katz, the FD of a curve defined by a 
sequence of   points is estimated by N
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where the K  indicator denotes the Katz’s definition 

of FD;  is the total length of the curve, realized as 
the sum of distances between successive points, i.e., 
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where  is the distance between the i  and ),( jidist j  
points of the curve;  is the diameter estimated as d
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for curves that do not cross themselves, usually, 
the  diameter is estimated as the distance between 
the first point of the sequence and the point of the 
sequence that provides the farthest distance, i.e., 

d
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and ns is the number of steps in the curve, defined 
as  

sn
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where a a denotes the average step, i.e., the average 
distance between successive points. In this way, a 
general unit or “yardstick” is formed that eliminates 
the dependence of the FD estimates derived by (12) 
on the measurement units used. 
 
2.2.2  Sevcik’s  definition of FD 
Sevcik uses the following definition for the FD of an 
N-sample curve 
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where the S  indicator denotes the Sevcik’s 

definition of FD and  is defined as in (13). Before 
applying (17), Sevcik proposes, for convenience, 
linear transformations of the waveform, in order to 
transform it into a normalized space where all axes 
are equal. He proposes normalization of every point 
in the abscissa as 

cL
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where , are the original values of the 
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Both the above two FD definitions, given by (12) and 
(17), respectively, were alternatively realized within 
the WT-FD filter structure. Nevertheless, since the 
differences in the amplitude between the WT 
coefficients in the WT scales were of great 
importance, the normalization of (18) and (19) was 
not adopted in the implementation of (17) in the 
WT-FD filter, because it significantly reduced these 
differences. Instead, for keeping the same peak 
peeling algorithm in both realizations of the FD, and 
without affecting the dynamic range of the SKFD ,  
estimates, associated with the dynamic range of the 
relevant WT coefficients, the following ordinate 
transformation was applied: 
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where  are the FD estimates of the curve 

given by (12) or (17), and . With 
(9), the 

SK
origFD ,

)min( ,SK
origFD FDm =

SKFD ,  estimates have always minimum 
value equal to 1.0. 
2.2.3 FD estimation 
The FD, defined either by (12) or (17), is estimated   
                                                            

                                               (21) )006.0int( sL fW =

where int  indicates the integer part of the 

argument and  is the sampling frequency used in 
the acquisition of the sound signals. The constant 
0.006 results in valid FD peaks, since low values of 

  generate too many false (not reliably estimated) 

FD peaks, while high values of  result in 
smoothed FD time series, merging the sharp peaks, 
hence, reducing the required peak resolution in the 

FD domain. This -sample window is one-sample 
shifted along the N -sample input vector, with 

, in order to obtain point-to-point values of 

the estimated FD. The estimated FD, using either (12) 
or (18), over each segment of the input vector 
obtained with the sliding window is assigned to its 
midpoint. In this way, the final sequence of the FD 

has a total length of 

)(⋅

sf

LW

LW

LW

NWL <<

1+− LWN  samples. This length 
is extended to comply with the N-sample length of 
the original input vector, assigning the FD and 

FD 1+− LWN estimated values to the first and last 

half of the 1−LW  missing values, respectively. 
 
 
2.3   The proposed approach 
The main thrust of the proposed WT-FD filter is the 
more enhanced selection of the WT coefficients that 
correspond to the short-circuit during the employed 
MRD-MRR procedure, compared to that of the 
wavelet transform b-ased stationary-nonstationary 
(WTST-NST) filter. For ease of reference, the 
WTST-NST filter is epitomized here. 

The WTST-NST filter is a wavelet domain 
filtering technique that characterizes the WT 
coefficients with respect to their amplitude. In 
particular, the WTST-NST filter employs the 
MRD-MRR scheme to produce the WT coefficients 
at different analysis scales, and categorizes the most 
significant WT coefficients at each scale, with 
amplitude above some threshold, as the ones that 
correspond to the signal of interest, and the rest, as 
the ones that correspond to the background noise. 
Consequently, a wavelet domain separation of the 
WT coefficients corresponding to the signal of 
interest and the background noise, respectively, is 
used to offer a domain separation of the same signals. 
With an iterative procedure, the WTST-NST filter 
constructs refined versions of the signal of interest, 
resulting, after a stopping criterion is met, in the 
finally de-noised short-circuit signal. 

The proposed WT-FD filter overcomes the 
requirement of the WTST-NST filter for empirical 
setting of a multiplicative parameter in the definition 
of its threshold, providing a different perspective in 
the categorization of the WT coefficients. In 
particular, it employs the FD analysis to construct an 
efficient way of thresholding. This use of the FD is 
motivated by the work of Hadjileontiadis and 
Rekanos, where they used the KFD  to successfully 
detect the transient signal in the sound recordings. 
Their FD-based detector, namely FDD, resulted in 
efficient and accurate detection of the short-circuit  in 
the time domain. However, the FDD did not provide 
with short-circuit signals extracted from the 
background noise. In the proposed WT-FD filter, the 
detection ability of the FDD scheme is applied not in 
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the time domain, but in the WT one. In this way, not 
only the detection but the extraction, as well, of the 
short-circuit signals from the background noise is 
achieved, by reconstructing the signal of short-circuit 
through the WT coefficients efficiently selected by 
the FDD. 
 
 
3   Simulation Results and analysis 
 
Short circuit faults in electric power can be mainly 
divided into four types, i.e. single-phase ground fault, 
two-phase fault, two-phase ground fault, three-phase 
ground fault. This paper emphasizes on  the 
two-phase fault and the selected mother wavelet is 
Meyer wavelet. 

In this section, the simulation data was 
generated in Power system toolbox of 
Matlab/Simulink. The method can acquire the 
variation rule of shout-circuit in distribution power 

system for further analysis. The short-circuit current 
is decomposed into four levels by Meyer wavelet, 
and based on the feature extraction technology of 
wavelet transform, the WT-FD of the fourth level 
detailed components is threshold for short-circuit 
fault determination. In distribution power system, the 
power supply voltage angle or the current angle has 
large impact on the short-circuit current fluctuation 
process, and fault initial phase is considered as an 
important factor. Without loss of generality, A phase 
and B phase are fault phases and C phase is the 
normal phase. Fig.1 and Fig.2 are the three phase 
current and ＷT-FD calculation results, respectively. 
CWD represents complex wavelet decomposition. 
Table 1 shows the maximum of Signal and WT-FD 
of two-phase short-circuit and we can see that: the 
WT-FD of A phase fault current and B phase fault 
current are different distinctly  from  the C phase 
normal current. The value in Table 1 is normalized 
value. 
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Fig. 1 Waveform of phase current  under two-phase short-circuit       Fig. 2  CWD  of phase current  under two-phase short-circuit 

 
Table1 The maximum of phase current and WT-FD under two-phase short-circuit 

 
Phase 
Angle 

Phase 
Sequence 0 30 60 90 120 150 165 

A 27.56 27.58 27.62 27.59 27.66 27.54 27.88 

B 25.83 25.84 25.87 26.02 26.16 25.87 26.12 Current 

C 4.93 4.92 4.93 5.02 5.06 5.01 5.04 

A 88.49 97.56 77.97 40.46 27.59 57.21 80.21 

B 89.01 98.43 76.97 41.31 25.61 57.23 82.20 CWD 

C 4.92 4.88 4.93 5.02 5.04 4.96 4.97 

 

 
 
4   Conclusions 
In this paper, the WT-FD filter, a wavelet-based 
filtering scheme that employs fractal dimension 
thresholding is proposed evaluated to detect the short 
circuit in distribution power system and proved to be 
a very promising tool for the enhancement of the 

early fault prediction. The employment of the FD in 
the WT domain provides an effective selection of the 
WT coefficients. Quantitative and qualitative 
analysis of the simulation results, show very reliable 
and robust performance, despite the differences in the 
morphology of the various types of the input signals.  
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The advantage of using the wavelet-based fractal 
analysis is indeed twofold. First, we analyze the 
nonstationary signal using the wavelet transform. 
Then, the time-frequency information contents 
obtained with the wavelet transform will be used to 
estimate the fractal value as detailed in the method 
section to characterize the signal. The estimation of 
the Hurst exponent (or the fractal dimension) is 
nothing more than a representation of the variances 
of the wavelet coefficients at each scale, which 
provides valuable information about the variance 
progression over the wavelet scales. 
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