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Abstract: - Power quality (PQ) is becoming prevalent and of critical importance for power industry recently. The 
fast expansion in use of power electronics devices led to a wide diffusion of nonlinear, time-variant loads in the 
power distribution network, which cause massive serious power quality problems. The quantitative detection of 
two distortions of voltage waveform, i.e., voltage sag and voltage swell, is conducted and on this base a novel 
approach based on wavelet transform (WT) to detect and locate the PQ disturbances is proposed. The signal 
containing noise is de-noised by wavelet transform to obtain a signal with higher signal-to-noise ratio (SNR), 
and then is input to the wavelet network; the synthesized method of recursive orthogonal least squares algorithm 
(ROLSA) and improved Givens transform is used to fulfill the network structure; the fundamental component of 
the signal is estimated to extract the mixed information using wavelet network, and then the disturbance is 
acquired by subtracting the fundamental component; the principle of singularity detection using WT modulus 
maxima is presented and a dyadic wavelet transform approach for the detection and localization of the power 
quality disturbance is proposed. The simulation results demonstrate that the proposed method is effective. 
 
Key-Words: - Power quality disturbance, wavelet transform, signal de-noise, singularity detection, disturbance 
localization, power system  
 
1   Introduction 
Power quality (PQ) issues have emerged, after the 
worldwide energy market deregulation, as an 
exponentially demanding attention research field for 
electric utilities and endusers. The electrical energy 
market has observed a growth in the number of 
independent power producers with poorly controlled 
synchronization, an increase in competition, a 
somehow related reluctance to exchange information, 
besides new system interconnections and customers 
necessities. Power quality issues and the resulting 
problems are the consequences of the increasing use 
of solid state switching devices, nonlinear and power 
electronically switched loads, unbalanced power 
systems, lighting controls, computer and data 
processing equipment, as well as industrial plant 
rectifiers and inverters. These electronic-type loads 
cause quasistatic harmonic dynamic voltage 
distortions, inrush, pulse-type current phenomenon 
with excessive harmonics, and high distortion. A 
power quality problem usually involves a variation in 
the electric service voltage or current, such as voltage 
dips and fluctuations, momentary interruptions, 
harmonics and oscillatory transients causing failure, 
or maloperation of the power service equipment. 
Hence, to improve power quality, it is required to 
know the sources of power system disturbances and 

find ways to mitigate them. To monitor electrical 
power quality disturbance, new and powerful tools 
for the analysis and operation of power systems, as 
well as for PQ diagnosis are currently available. The 
new tools of interest are those of artificial 
intelligence (AI) and wavelet transform[1]-[3] (WT). 

The use of AI techniques in electric power has 
received extensive attention from researchers in the 
electric power area and the literature on these 
applications has become rather huge in volume. 
Areas of electric power where the use of AI has been 
researched include: alarm processing, systems 
diagnosis, protection, system security, system 
restoration, system control, operational aid devices, 
generation scheduling, power system planning, 
power system stability, power system analysis, load 
forecasting, and fault diagnosis and location. 
Wavelet analysis is based on the decomposition of a 
signal according to time-scale, rather than frequency, 
using basis functions with adaptable scaling 
properties which are known as multi-resolution 
analysis. The wavelet function is localized in time 
and frequency yielding wavelet coefficients at 
different scales. This gives the wavelet transform 
much grater compact support for analysis of signals 
with localized transient components arising in power 
quality disturbances manifested in voltage, current, 
or frequency deviations.  
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In this paper, the power quality disturbance 
signal is de-noised by WT to obtain higher 
signal-to-noise ratio (SNR) firstly; the synthesized 
method of recursive orthogonal least squares 
algorithm (ROLSA) and improved Givens transform 
is used to fulfill the wavelet network structure; the 
fundamental component of the signal is estimated by 
the wavelet network and then the disturbance is 
acquired by subtracting the fundamental component; 
the principle of singularity detection using WT 
modulus maxima is presented in detection and 
localization of the power quality disturbance. The 
simulation results show that the proposed method has 
good performance in calculation speed and accuracy. 
 
 
2   Wavelet Network structure and 
training algorithm 
 
2.1 Wavelet transform and signal denoising 
The wavelet analysis block transforms the distorted 
signal into different time-frequency scales. The 
wavelet transform (WT) uses the wavelet functionϕ  
and scaling function φ  to perform simultaneously 
the multiresolution analysis (MRA) decomposition 
and reconstruction of the measured signal. The 
wavelet function ϕ  will generate the detailed 
version (high-frequency components) of the 
decomposed signal and the scaling function φ  will 
generate the approximated version (low-frequency 
components) of the decomposed signal. The wavelet 
transform is a well-suited tool for analyzing 
high-frequency transients in the presence of 
low-frequency components such as nonstationary 
and nonperiodic wideband signals. 

The first main characteristic in WT is the MRA 
technique that can decompose the original signal into 
several other signals with different levels (scales) of 
resolution. From these decomposed signals, the 
original time-domain signal can be recovered without 
losing any information. 

The recursive mathematical representation of 
the MRA is as follows: 
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where  represents approximated version of the 

given signal at scale ;  represents detailed 
version that displays all transient phenomena of the 
given signal at scale  ; 
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1+j ⊕  denotes a summation 

of two decomposed signals; n   is the decomposition 
level. 

Before the WT is performed, the wavelet 
function )(tϕ  and scaling function )(tφ must be 
defined. The wavelet function serving as a highpass 
filter can generate the detailed version of the 
distorted signal, while the scaling function can 
generate the approximated version of the distorted 
signal. In general, the discrete )(tϕ and )(tφ can be 
defined as follows:  
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where is the scaling coefficient at scale njc , j , and 

is the wavelet coefficient at scale njd , j . 
Simultaneously, the two functions must be 

orthonormal and satisfy the properties as follows: 
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where is the approximated version at 

scale

nju ,1+

1+j  , nj ,1+ω is the detailed version at scale 
1+j , and j is the translation coefficient.  
According to the orthonormal wavelet functions 

and (5), the signal  can be reconstructed from )(tx j
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both and 1+ju 1+jω coefficients using the inverse 
discrete wavelet transform (IDWT) . 

Usually the high-frequency part includes noise 
component. In particular, the disturbance signal 
contains many kinds of noise. Sometimes, the 
disturbance signals are submerged by noise, so it is 
difficult to analyze directly. It is essential to denoise 
before analyzing. There are two key problems that 
need to be solved in practice use of denoising. One is 
the determination of the threshold; another is the 
determination of the decomposition level. In this 
paper, a novel method based on the soft threshold 
rule is brought forward to achieve a higher SNR. It is 
especially suitable for the detection of weak signal 
under noise background. The signal de-noising 
algorithm is summarized as follows: 
B1)Compute noise 
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 is the length of N  level wavelet 

decomposition coefficient, d  is the  level 
high-frequency coefficient; 
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B2)Compute the soft threshold 
)ln(2 Nthr MT σ= ;If thrNi Td ≥,  then  reserve 

the coefficient; otherwise set ; 0, =Nid
B3) The denoised disturbance signal  can be obtained 
by reconstructing the wavelet decomposition 
coefficient. 
 
 
2.2  Wavelet network training algorithm 
Simplified table is the result of simplifying condition 
attribute, and the classification function remains to 
be. And simplified decision table contains less 
complicated condition attributes. We know a 
simplified condition is necessary in making 
decisions. The algorithm has 2 steps, i.e. attribute 
reduction and attribute value reduction as follows. 

A nonlinear optimization algorithm, such as 
gradient descent, conjugate gradients or 
Broyden-Fletcher-Goldfarb-Shanno (BFGS), could 
be applied to training a wavelet network. However, 
an advantage of the wavelet network architecture is 
that it can be trained in stages using linear 
optimization algorithms, which allows for faster 
training and improved convergence compared with 
nonlinear alternatives. 

Orthogonal decomposition is well known to be a 
numerically robust method for solving the least 
squares problem and can be applied to computing the 
output layer weights in a wavelet network[4], [5]. It was 

recently demonstrated that a recursive version can 
maintain the robust property while requiring less 
computer memory than a batch version. 

In this paper, the recursive orthogonal least 
squares (ROLS) algorithm is developed for 
determining the weighting W , in a wavelet network. 
Also, the form of the ROLS algorithm used here 
determines the full weighting matrix at each iteration 

. The weighting W matrix is computed to 
minimize the error, where is 
the target network output. The algorithm is therefore 
developed below. 
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EWEYY +Φ=+= ˆ                                            (7)                   
where is the desired output matrix;Y is the wavelet 
network output matrix;

Y ˆ
Φ is the hidden layer output 

matrix; E is the error matrix and  
[ ])(),...,2(),1( NyyyY T = ,
[ ])(ˆ),...,2(ˆ),1(ˆ NyyyY T = , 

)](),...,2(),1([ NT ΦΦΦ=Φ , 
. )](),...,2(),1([ NeeeE T =
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minimized: 
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Because the sizes of matrices andY increase with 
new data, the manipulation of andY will be more 
difficult when the number of data becomes large. 
However,

Φ
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Φ and Y can be manipulated much more 
easily as their sizes are constant and small. Following 
a similar procedure to that described above, apply an 
orthogonal decomposition 
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Equation (10) is then transformed to 
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To find an update for and , compute 
another orthogonal decomposition as follows: 
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Hence, the optimal in (15) can be solved from  )(tW
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The residual at iteration t can be computed from the 
recursive equation 
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T ty is an increment to the squared 

residual at each iteration t . Recall that is an 
upper triangular matrix and therefore can be 
easily solved from (11) by backward substitution. 
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The ROLS algorithm can be implemented efficiently 
using Givens rotations which avoids the need to 
explicitly compute the orthogonal matrices, and in 
the main algorithm update (14). Standard Givens 
rotations have been used in this research but 
equivalent implementations of the techniques can 
also be made using modified Givens rotations. The 
standard Givens rotation operates on two row vectors 
so as to zero the first nonzero element in the second 
row vector as follows: 
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The ROLS algorithm and modified Givens rotation is 
summarized as follows: 
B1) Initialize and set 

0=i , aIR =0 , aIR =)0( where  is a small 

positive number,  and set 
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B2) Select the training data and ,  
decomposition is applied using (19) when . 
Givens rotation is to achieve:  
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The wavelet network is trained off-line before 
combining with the DTC system. The design realizes 
the aim of wavelet network on-line identifying the 
stator resistance successfully by means of computer 
Matlab/Simulink simulation. 
 
 
3   Simulation Results and analysis 
 
3.1  Signal singularity detection  principle 
As mentioned in the introduction, a remarkable 
property of the wavelet transform is its ability to 
characterize the local regularity of functions. In 
mathematics, this local regularity is often measured 
with Lipschitz exponents. Let  be a positive integer 
and

n
1+≤≤ nn α . A function  is said to be 

Lipschitz 
)(xf

α at , if and only if there exists two 0x
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constants A  and , and a polynomial of 
order , , such that for ,  

00 >h
n )(xPn 0hh <

αhAhPhxf n ≤−+ )()( 0                                       (21) 
The function  is uniformly Lipschitz a over the 
Interval , if and only if there exists a constant 

)(xf
],[ ba

A  and for any there exists a polynomial of 
order n , ,  such that equation (21) is satisfied 
if  . 

],[0 bax ∈

)(xPn

],[0 bahx ∈+
We call Lipschitz regularity of  and , 

the superior bound of all values 
)(xf 0x

α such that  is 
Lipschitz 

)(xf
α at . 0x

We say that a function is singular at , if it is 
not Lipschitz 1 and .  
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3.2  Simulation results and analysis 
Voltage sags are referred to the magnitude of voltage 
under 0.9 pu (in the range of 0.1－0.9 pu) lasting for 
10ms － 1min, which is generally caused by the 
electric motor startup or switching operation of 
power equipments. Voltage sags cause the equipment 

operating abnormally. Fig. 1 shows the location 
results for a disturbed voltage curve with a sag lasting 
for 100ms and the falling magnitude by 10% and  it’s 
wavelet decomposition coefficient curve. 

Voltage swells are referred to voltage 
magnitude beyond 10% of the rated value (in the 
range of 1.1－1.8pu) and lasting for 10ms－1min, 
generally caused by single phase short-circuit or 
tripping off, which usually make the equipments 
malfunction. Fig. 2 shows the detection results for a 
voltage curve with a swell lasting for 100ms and the 
rising magnitude by 10% and  it’s wavelet 
decomposition coefficient curve. 

From Fig.1 and Fig.2, it can be seen that the 
modulus maxima of wavelet transform can 
correspond to the instantaneous discontinuity of the 
disturbance accurately and it is easy to determine the 
start point, recovery point and sustained time of the 
power quality disturbance. Suppose that the sample 
cycle is , the start point is  and the recovery 

point is , the sustained time is can be obtained: 
0T 1n
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Fig.1  Curves of noise-riding voltage sag and calculation results using wavelet transform 
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Fig.2  Curves of noise-riding voltage swell and calculation results using wavelet transform 

 
 
 
4   Conclusions This paper has presented a new technique which 

possesses the advantage of wavelet network to 
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extract the power quality disturbance signal 
superimposing on the power frequency components. 
The synthesized method of recursive orthogonal least 
squares algorithm (ROLSA) and improved Givens 
transform is used to fulfill the wavelet network 
structure and estimate the power fundamental 
component.  A novel soft threshold denoising method 
is put forward to improve the SNR, and the modulus 
combining polarities of wavelet transform 
coefficients has been developed for detection and 
localization of the power quality disturbance. The 
simulation results have shown that the satisfactory 
performance has been achieved under different 
disturbances and noise background. 

Furthermore, the method enables an accurate 
classification of transient events to be performed, and 
characteristics are easily read from the 
time-frequency plane. This method will be extended 
to detect and characterize significant harmonic 
distortion and flicker levels. The whole method will 
then be used as a power quality analysis software tool 
in studies for utilities. 
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