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Abstract: – Normalization procedures are required in multiattribute decision making (MADM) to transform 

performance ratings with different data measurement units in a decision matrix into a compatible unit. MADM 

methods generally use one particular normalization procedure without considering the suitability of other available 

procedures. This study compares four commonly known normalization procedures in terms of their ranking 

consistency and overall preference value consistency when used with the most widely used simple additive weight 

method. To achieve this, new performance measure indices are introduced and new simulation settings are devised 

for dealing with various measurement settings. A wide range of MADM problems with various measurement scales 

are generated by simulation for the comparison study. The experiment result shows that vector normalization and 

linear scale transformation (the max method) outperforms other normalization procedures when used with SAW. 

 

Key-Words: - MADM, SAW, Normalization, Decision making, Decision support systems, Simulation study, 

Method comparison, Decision consistency. 

 

 

1 Introduction 
 

Multiattribute decision making (MADM) problems 

involve ranking or evaluating a finite number of 

alternatives with multiple, often conflicting, attributes. 

Various MADM methods have been developed to solve 

different problem settings. MADM methods have 

shown their suitability to particular decision problems. 

The sheer complexity in MADM problems and the 

need for a timely solution prompts to choose any 

MADM method suitable to a problem on the basis of 

experience, knowledge and intuition. With quite a few 

available methods, it is extremely difficult to choose 

the best method that meets all the requirements. Several 

comparative studies on MADM methods have shown 

that certain methods are more suitable for specific 

decision settings as compared to other methods 

[2][7][12][13][15]. 

In MADM problems, each alternative has a 

performance rating for each attribute, which represents 

the characteristics of the alternative. It is common that 

performance ratings for different attribute are measured 

by different units. To transform performance ratings 

into a compatible measurement unit, normalization 

procedures are used. MADM methods often use one 

normalization procedure to achieve compatibility 

between different measurement units. For example, 

SAW uses linear scale transformation (max method) 

[1][3][5][6][13][14], TOPSIS uses vector normalization 

procedure [13][14][16], ELECTRE uses vector 

normalization [4][14] and AHP uses linear scale 

transformation (sum method) [8][9][10][14].  

Enormous efforts have been made to comparative 

studies of MADM methods, but no significant study is 

conducted on the suitability of normalization 

procedures used in those MADM methods. This leaves 

the effectiveness of various MADM methods in doubt 

and certainly raises the necessity to examine the effects 

of various normalization procedures on decision 

outcome when used with given MADM methods. 
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It is thus the main purpose of this paper to find out 

the effect of four commonly used normalization 

procedures on decision outcomes of a given MADM 

method for the general MADM problem where 

attribute measurement units are different. 
 

 

2 MADM & Normalization Procedures 
 

An MADM problem usually involves a set of m 

alternatives Ai (i = 1, 2,…, m), which are to be 

evaluated based on a set of n attributes (evaluation 

criteria) Cj (j = 1, 2, …, n). Assessments are to be made 

to determine (a) the weighting vector W = (w1, w2, …, 

wj, …, wn) and (b) the decision matrix X = {xij, i=1, 2, 

…, m; j=1, 2, …, n}. The weighting vector W 

represents the relative importance of n attributes Cj 

(j=1, 2, …, n) for the problem. The decision matrix X 

represents the performance ratings xij of alternatives Ai 

(i = 1, 2, …, m) with respect to attributes Cj (j = 1, 2, 

…, n). Given the weighting vector W and decision 

matrix X, the objective is to rank or select the 

alternatives by giving each of them an overall 

preference value with respect to all attributes.  

MADM methods generally require two processes to 

obtain the overall preference value for each alternative 

– (a) normalization and (b) aggregation. Normalization 

is first used to transform performance ratings to a 

compatible unit scale. An aggregation procedure is then 

used to combine normalized decision matrix and 

attributes weight W to achieve an overall preference 

value for each alternative, on which the overall ranking 

of alternatives is based. 

 To help present the comparative study, the four well 

known normalization procedures used in MADM are 

briefly described below, including: (a) vector 

normalization, (b) linear scale transformation (max-min 

method), (c) linear scale transformation (max method) 

and (d) linear scale transformation (sum method). 
 

 

2.1 Vector Normalization (N1) 
In this method, each performance rating of the 

decision matrix is divided by its norm. The normalized 

value rij is obtained by 
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This method has the advantage of converting all 

attributes into dimensionless measurement unit, thus 

making inter-attribute comparison easier. But it has the 

drawback of having non-equal scale length leading to 

difficulties in straightforward comparison [6] [14]. 
 

2.2 Linear Scale Transformation, Max-Min 

Method (N2) 
This method considers both the maximum and 

minimum performance ratings of attributes during 

calculation.  

For benefit attributes, the normalized value rij is 

obtained by 
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For cost attributes, rij is computed as 
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where 

max

jx
 is the maximum performance rating 

among alternatives for attribute Cj (j = 1, 2, …, n) and 
min

jx  is the minimum performance rating among 

alternatives for attribute Cj (j = 1, 2, …, n). 

This method has the advantage that the scale 

measurement is precisely between 0 and 1 for each 

attribute. The drawback is that the scale transformation 

is not proportional to outcome [6]. 

 

2.3 Linear Scale Transformation, Max Method 

(N3) 
This method divides the performance ratings of each 

attribute by the maximum performance rating for that 

attribute.  

For benefit attributes, the normalized value rij is 

obtained by 

                     
max

j

ij

ij
x

x
r =             (4) 

For cost attributes, rij is computed as 
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where

max

jx
is the maximum performance rating among 

alternatives for attribute Cj (j = 1, 2, …, n). 

Advantage of this method is that outcomes are 

transformed in a linear way [6][14]. 
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2.4 Linear Scale Transformation, Sum Method 

(N4) 
This method divides the performance ratings of each 

attribute by the sum of performance ratings for that 

attribute as follows 
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where jx  is performance rating for each alternative for 

attribute Cj (j = 1, 2, …, n) [14]. 

In order to obtain the overall preference value, the 

normalized decision matrix generated by a 

normalization procedure needs to be aggregated by an 

MADM method. In this study, the simple additive 

weight (SAW) is used. 

 

2.5 Simple Additive Weight (SAW) 

  The SAW method, also known as the weighted sum 

method, is probably the best known and most widely 

used MADM method [6]. The basic logic of the SAW 

method is to obtain a weighted sum of the performance 

ratings of each alternative over all attributes. The 

overall preference value of each alternative is obtained 

by  

       ∑
=

=

n

j

ijji rwV
1

 ; i = 1, 2, …, m.     (7) 

 

Where )( iAV  is the value function of alternative iA , wj 

is weight attribute Cj and rij are normalized 

performance ratings [6][14]. 

 

 

3 Experiment and Performance 

Validation 
 

3.1 Simulation Study 
Simulation based experiments were conducted to 

provide results applicable to the general MADM 

problem rather than a particular MADM problem. In 

the simulation study random decision matrices with 

alternatives Ai (i = 1, 2, …, 4) and attributes Cj (j = 1, 2, 

…, 4) were generated. Each decision matrix was 

normalized by using each of four normalization 

procedures. Then SAW was used to generate an overall 

preference value for each alternative. To simplify the 

process without losing generality, all the attributes 

were assigned equal weights. 

To gain an unbiased result, the following settings 

were used in the experiments: 

1) 10000 non-dominant decision matrices were 

generated randomly for each simulation run. 

2) For each data range, the process was repeated 

10 times and average was noted in final result 

table. 

3) The data ranges used for four attributes (C1, C2, 

C3, C4) were 1 – 10, 1 – 100, 1 – 1000, 1 – 

10000 respectively, each of which used 10 

increment steps , given below: 

Data range 1: [C1 (1 – 10), C2 (1 – 100), C3 (1 – 1000),  

C4 (1 – 10000)] 

Data range 2: [C1 (1 – 10), C2 (10 – 100), C3 (100 – 

1000), C4 (1000 – 10000)] 

Data range 3: [C1 (2 – 10), C2 (20 – 100), C3 (200 – 

1000), C4 (2000 – 10000)] 

Data range 4: [C1 (3 – 10), C2 (30 – 100), C3 (300 – 

1000), C4 (3000 – 10000)] 

Data range 5: [C1 (4 – 10), C2 (40 – 100), C3 (400 – 

1000), C4 (4000 – 10000)] 

Data range 6: [C1 (5 – 10), C2 (50 – 100), C3 (500 – 

1000), C4 (5000 – 10000)] 

Data range 7: [C1 (6 – 10), C2 (60 – 100), C3 (600 – 

1000), C4 (6000 – 10000)] 

Data range 8: [C1 (7 – 10), C2 (70 – 100), C3 (700 – 

1000), C4 (7000 – 10000)] 

Data range 9: [C1 (8 – 10), C2 (80 – 100), C3 (800 – 

1000), C4 (8000 – 10000)] 

Data range 10: [C1 (9 – 10), C2 (90 – 100), C3 (900 – 

1000), C4 (9000 – 10000)] 
 

 

3.2 Performance Measures 
 

3.2.1 Ranking Consistency 
Ranking consistency is used to indicate how well a 

particular normalization procedure produces rankings 

similar to other procedures. To measure the ranking 

consistency index (RCI) of a particular normalization 

procedure, the total number of times the procedure 

showed similarities/ dissimilarities in various extents 

with other procedures applied is calculated, over 

10,000 simulation runs and then its ratio with total 

number of simulation runs is calculated. The higher the 

RCI, the better the procedure performs. 

In calculating RCI, a consistency weight (CW) is 

used as follows: 

1) If a method is consistent with all 3 of other 3 

methods, then CW = 3/3 = 1. 

2) If a method is consistent with any 2 of other 3 

methods, then CW = 2/3. 
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3) If a method is consistent with any 2 other methods, 

then CW = 1/3. 

4) If a method is not consistent with any other 

methods, then CW = 0/3 = 0. 

 

The consistency index of N1 is calculated as 

RCI (N1) = [(T1234 * (CW=1) + T123 * (CW=2/3) + T124 

* (CW=2/3) + T134 * (CW=2/3) + T12 * (CW=1/3) + 

T13 * (CW=1/3) + T14 * (CW=1/3) + TD1234 * (CW=0)) 

/ TS]                       (8) 

 

The consistency index of N2 is calculated as 

RCI (N2) = [(T1234 * (CW=1) + T123 * (CW=2/3) + T124 

* (CW=2/3) + T234 * (CW=2/3) + T12 * (CW=1/3) + 

T23 * (CW=1/3) + T24 * (CW=1/3) + TD1234 * (CW=0)) 

/ TS]                          (9) 

 

The consistency index of N3 is calculated as 

RCI (N3) = [(T1234 * (CW=1) + T123 * (CW=2/3) + T134 

* (CW=2/3) + T234 * (CW=2/3) + T13 * (CW=1/3) + 

T23 * (CW=1/3) + T34 * (CW=1/3) + TD1234 * (CW=0)) 

/ TS]                     (10) 

 

The consistency of N4 is calculated as 

RCI (N4) = [(T1234 * (CW=1) + T124 * (CW=2/3) + T134 

* (CW=2/3) + T234 * (CW=2/3) + T14 * (CW=1/3) + 

T24 * (CW=1/3) + T34 * (CW=1/3) + TD1234 * (CW=0)) 

/ TS]                     (11) 

 

where 

RCI (X) = Ranking consistency index for normalization 

procedure X. 

TS = Total number of times the simulation was run 

(10,000 in this experiment). 

T1234 = Total number of times N1, N2, N3 and N4 

produced same rank. 

T123 = Total number of times N1, N2 and N3 produced 

same rank. 

T124 = Total number of times N1, N2 and N4 produced 

same rank. 

T134 = Total number of times N1, N3 and N4 produced 

same rank. 

T234 = Total number of times N2, N3 and N4 produced 

same rank. 

T12 = Total number of times N1and N2 produced the 

same rank. 

T13 = Total number of times N1and N3 produced the 

same rank. 

T14 = Total number of times N1 and N produced the 

same rank. 

T23 = Total number of times N2 and N3 produced the 

same rank. 

T24 = Total number of times N2 and N4 produced the 

same rank. 

T34 = Total number of times N3 and N4 produced the 

same rank. 

TD1234 = Total number of times N1, N2, N3 and N4 

produced different rank. 
 

3.2.2 Overall Preference Value Consistency 
An overall preference value for each alternative is 

generated by aggregating the normalized performance 

ratings; using an MADM method (e.g. SAW in this 

experiment). The overall preference value consistency 

is measured as the deviation in ratio between any pair 

of normalization procedures on the basis of their total 

positive distances in overall preference values 

produced by each procedure. Ideally the deviation is 0, 

so the method has a lower deviation is certainly a better 

one.  

Fig. 1 shows the overall preference value matrix 

which is obtained by combining the overall preference 

value for each alternative for each normalization 

procedure. 
 

 N1 N2 … Nm 

A1 P11 P12 … P1m 

A2 P21 P22 … P2m 

A3 P31 P32 … P3m 

… … ….. … …….. 

An Pn1 Pn2  Pnm 
 

Fig. 1 Overall preference value matrix 
 

In Fig. 1, Pij are the overall preference values for each 

alternative Ai (i= 1, 2, …, n), for each normalization 

procedure Nj (j= 1, 2, …, m). 

For simplicity and generality four alternatives (A1, 

A2, A3, A4) and four normalization procedures (N1, 

N2, N3, N4) has been used as an example in the 

experiments. 

The total positive distance between overall 

preference values for each normalization procedure can 

be calculated as 

 

TVD1 = |P11 – P21| + |P11 – P31| + |P11 – P41| + 

      |P21 – P31| + |P21 – P41| + |P31 – P41|    (12) 

 

TVD2 = |P12 – P22| + |P12 – P32| + |P12 – P42| + 

     |P22 – P32| + |P22 – P42| + |P32 – P42|    (13) 

 

TVD3 = |P13 – P23| + |P13 – P33| + |P13 – P43| +  

     |P23 – P33| + |P23 – P43| + |P33 – P43|      (14) 
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TVD4 = |P14 – P24| + |P14 – P34| + |P14 – P44| + 

      |P24 – P34| + |P24 – P44| + |P34 – P44|     (15) 
 

where 

TVD1 = Total overall preference value distance for N1 

TVD2 = Total overall preference value distance for N2 

TVD3 = Total overall preference value distance for N3 

TVD4 = Total overall preference value distance for N4 

 

The pair wise distance ratios between normalization 

procedures are calculated as 

 

RVD12 = TVD1 / TVD2            (16) 

 

RVD13 = TVD1 / TVD3            (17) 

 

RVD14 = TVD1 / TVD4            (18) 

 

RVD23 = TVD2 / TVD3            (19) 

 

RVD24 = TVD2 / TVD4            (20) 

 

RVD34 = TVD3 / TVD4            (21) 

 

where 

RVD12 = Total Overall Preference Value Distance Ratio 

between N1 and N2 

RVD13 = Total Overall Preference Value Distance Ratio 

between N1 and N3 

RVD14 = Total Overall Preference Value Distance Ratio 

between N1 and N4 

RVD23 = Total Overall Preference Value Distance Ratio 

between N2 and N3 

RVD24 = Total Overall Preference Value Distance Ratio 

between N2 and N4 

RVD34 = Total Overall Preference Value Distance Ratio 

between N3 and N4 

 

The deviation in pair wise ratios are calculated by 

   

DRVD12 = 1 – RVD12                    (22) 

   

DRVD13 = 1 – RVD13               (23) 

 

DRVD14 = 1 – RVD14            (24) 

 

DRVD23 = 1 – RVD23                                 (25) 

 

DRVD24 = 1 – RVD24                                        (26) 

 

DRVD34 = 1 – RVD34               (27) 

 

where 

DRVD 12 = Deviation in RVD between N1 and N2 

DRVD 13 = Deviation in RVD between N1 and N3 

DRVD 14 = Deviation in RVD between N1 and N4 

DRVD 23 = Deviation in RVD between N2 and N3 

DRVD 24 = Deviation in RVD between N2 and N4 

DRVD 34 = Deviation in RVD between N3 and N4 

 

The average deviation for each normalization 

procedure is calculated respectively as, 

 

AD (N1) = (DRVD12 + DRVD13 + DRVD14) / 3       (28) 

 

AD (N2) = (DRVD12 + DRVD23 + DRVD24) / 3       (29) 

 

AD (N3) = (DRVD13 + DRVD23 + DRVD34) / 3       (30) 

 

AD (N4) = (DRVD14 + DRVD24 + DRVD34) / 3  (31) 

 

where 

AD (X) = Average Deviation for normalization 

procedure X 

 

Equations (8) – (31) can be extended to 

accommodate any number of alternatives and any 

number of normalization procedures. 

 

 

4 Experiment Results and Analysis 
 

4.1 Results for Ranking Consistency  

For each of the 10 data ranges, the simulation was 

run for 10,000 times (i.e. 10,000 performance matrices 

were generated) and the total number of times the 

normalization procedures performed with similar or 

different results as other procedures were recorded. Fig. 

2 shows the result. 
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Fig. 2 Ranking similarity over various data ranges. 

 

As shown in Fig. 2, the number of times N1, N2, N3 

and N4 produce the same ranking is almost 50% of the 

total run over different data ranges. There is an initial 

increase with but is decreased slightly when the range 

becomes too narrow. The same rankings produced by 

N1, N3 and N4 increases consistently with narrow data 

ranges and almost reached 50% of total run with the 

narrowest data range. In addition, the number of times 

the same rankings produced by N1 and N4 has an 

initial increase but gradually decreases over narrow 

data ranges. It is also evident that the combination of 

N1, N2 and N3 and the combination of N2 and N3 

have a significant number of similarities which dropped 

heavily with narrow data ranges.  Other combinations 

produce same ranking few times, which are further 

decreased with narrow data ranges. 

The result suggests that with wide data ranges, all 

four procedures produce similar outcomes for almost 

50% of times. In particular N1, N3 and N4 produce 

similar results in most cases. 

RCI for normalization procedures N1, N2, N3 and 

N4 can be calculated by applying Equations (8) – (11) 

on the ranking similarity result. Fig. 3 shows the results 

over various data ranges. 
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Fig. 3 Ranking consistency index for N1, N2, N3 and 

N4 over various data ranges. 

 

As shown in Fig. 3, N1 has the highest RCI, closely 

followed by N3 and N4. All three procedures have an 

increase in RCI as data ranges narrow. With narrowing 

data ranges, N4 shows slightly better RCI over N3. N2 

shows a poor level of RCI, as compared to other 

procedures. N2 shows a decreasing trend over narrow 

data ranges. On the basis of ranking consistency, N1 

performs best, followed by N3 and N4. 

 

B. Results for Overall Preference Value Consistency: 

In order to calculate the pairwise ratio deviation, the 

overall preference value matrix, as shown in Fig. 1 was 

first generated using the results obtained from the 

ranking procedure. Equations (12) to (15) are then 

applied to obtain the total positive distance in 

preference values for each normalization procedure.  

Equations (16) to (21) are applied to calculate the 

pairwise ratio in the total distance for each pair of 

normalization procedures. Pairwise ratio deviations are 

obtained using equations (22) to (27). Fig. 4 shows the 

result.  
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Fig. 4  Pair wise deviation in total overall preference 

value distance ratio. 
 

As indicated in Fig. 4, pairwise deviation for the N1 

and N3 pair has the lowest deviation over all data 

ranges with a slight increase for narrower ranges. The 

N1 and N4 pair shows moderate deviation with a minor 

increase over all data ranges. Deviation for the N2 and 

N3 pair shows a low deviation in wide data ranges but 

increases dramatically with narrow data ranges. The 

pair of N1 and N2 starts with a moderate deviation but 

increases heavily with narrower ranges. The N3 and N4 

pair starts with a comparatively high deviation and has 

a gradual increment over narrow data ranges. Deviation 

for the N2 and N4 pair is highest over all data ranges 

with an increase over narrow ranges. 

The average deviation for each of the normalization 

procedures N1, N2, N3 and N4 is calculated by using 

Equations (28) to (31) respectively.  Fig. 5 shows the 

average deviation for each normalization procedure 

over various data ranges. 

As shown in Fig. 5, the average deviation is less for 

N1 and N3 over all data ranges with an increasing trend 

over narrow data ranges.  N3 performs slightly better, 

although very similar, with wide data ranges, while N1 

performs better over narrow data ranges. Deviation for 

N4 shows less variation over different data ranges but 

shows more deviation than N1 and N3. N2 shows less 

deviation than N4 for wide data ranges but has a 

dramatic increase with narrow data ranges. In terms of 

overall preference value consistency, N1 performs best 

closely followed by N3. 
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Fig. 5 Average deviation for N1, N2, N3 and N4 

 

 

5 Conclusion 
 

Multiattribute decision making generally requires 

using a normalization procedure to transform different 

measurement units of attributes to a comparable unit. 

The suitability study of a specific normalization 

procedure for a given MADM method is required. A 

simulation based study has been conducted to examine 

the effects of commonly used normalization 

procedures, when applied with SAW for the general 

MADM problem. 

The result of the simulation study suggests that with 

ranking consistency and overall preference value 

consistency as the performance measures, vector 

normalization (N1) and linear scale transformation, 

max method (N3) are more suitable for SAW in 

decision settings where the attributes measurement 

units are diverse in range and there are a small number 

of alternatives to be ranked. 
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 The new performance measures introduced and the 

new simulation process devised can be extended to 

other MADM methods and to determine the best 

combination of the normalization procedure and the 

MADM method. 
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