
Security Software Engineering: Do it the right way

Ahmad AlAzzazi, Asim El Sheikh,
 Faculty of Information Systems & Technology Faculty of Information Systems & Technology
Arab Academy for Banking and Financial Sciences Arab Academy for Banking and Financial Sc.

 Amman, Jordan Amman, Jordan

Abstract: - Secure software development is one of the most information system issues that raised through the
use of the internet and networked systems. The importance of developing secure software increases. In this
work we present a process for the development of security critical software projects and an overview of some
of the existing processes, standards, life cycle models that support the secure software development. It is a
guide to the common body of knowledge for producing, acquiring, and sustaining secure software.

Key-Words: - Software engineering for Secure Systems, Software Engineering, SSE-CMM, Security Quality
Requirements, and Engineering (SQUARE)

1 Introduction
With the wide use of the Internet, and increasing
need of e-commerce solutions, e-banking, etc., the
risks from malicious attacks are increasing. The
need not only for physical protection of the software
systems, but there is also a need to think about the
process of building the software for security critical
systems.
Software engineering is concerned with the use of
engineering principles for developing quality
software in a predictable way, engineering is
concerned with all aspects of software production
that integrates the processes “a framework for
software development” [3]. There are general
software engineering processes developed over the
past decade.
One of the real challenges facing the emerging field
of software engineering is security. There is a lack
of an easily accessible common body of knowledge
in this area. Simply put most software developers
and architects, the very people who need to
understand and practice software security, remain
blithely unaware of their critical role.
Due to a report by the Department of Trade and
Industry in the UK 60% of organizations have
suffered security breaches in the last two years but
only 37% of organizations undertake a risk
assessment identifying critical assets and 40% of
companies that have experienced serious security
breaches still do not have any contingency plans to
deal with future attacks[11].
Threats from a software security breach could range
from the very mild (such as the defeat of copy
protection) to the disastrous.

US Department of Defense (DoD) found that 88%
of their computers were penetrable, and 96 % of
those did not notice penetration [11].
Software system designers today must think not only
of users, but also of all threats. Security concerns
must inform every phase of software development,
from requirements engineering to design,
implementation, testing, and deployment, which
means that security couldn't be handled as a side
issue.
This paper suggests that techniques must be
developed and used to build trust in software tools
and processes. This leads to an interaction between
software engineering and security engineering,
which rise to give to several fascinating research
challenges and opportunities. We suggest that
security requirements must be incorporated into
software systems today. In this paper we argue that
security cannot be a side issue of a software project,
it is a core of the project, which couldn’t function
without it.

2 Security Engineering and Software
Engineering
Devenbau says: Security, like beauty, is in the eye
of the beholder [1]. A public library will clearly
have a different view of computer security than will
a bank transaction.
Security is a Non-functional emergent property of a
system, like reliability, performance and safety. It
could be defined as the system attribute that reflects
the ability of the system to protect itself from
external attacks that may be accidental or deliberate,
the concealment of information or resources, the

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 19

mailto:Alazazi55@yahoo.com

prevention of unauthorized disclosure of
information, the extent that the software itself must
be hidden or obscured, the trustworthiness of data or
resources [3].
The three Properties of Security are Confidentiality,
Integrity and Availability, with other extended
Properties like Accountability and Authenticity.
A security system consists of hardware, software,
people, procedures and culture. There exists many
security enforcements like the Network Security,
Computer Security, Application Security and
Software Security.
Secure software is software that cannot be
intentionally forced to perform unintended
functions; it is the process of designing, building and
testing software for security [5]. This gives the
interaction between Security Engineering and
Software Engineering. Where software engineering
is the use of engineering principle to developing
quality software in a predictable way, engineering is
concerned with all aspects of software production
that integrates the processes, Methods and the Tools.
For a Software Engineer the following question
must be answered: How do we design, build, verify,
and maintain software to be secure? This leads to the
point that Software security includes software
architectures and structures to improve security,
techniques and tools that help with reasoning about
software security.
Software security is concerned with algorithm
design, traditional cryptography, education, design,
interface selection, specification, Implementation
and coding, verification, testing and evaluation,
deployment and secure execution, maintenance and
bug fixing, and refinement. This means that building
secure software is a process that ends with an
artifact; and software security is concerned with all
phases of a software engineering process.
We could argue that current development practice
suffers from different key problems like, Security
requirements tend to be kept separate from other
system requirements, and not integrated into any
overall strategy [6].
The overwhelming majority of existing software,
even software for safety-critical, security-critical
systems, has been built and is being built in an ad
hoc, unsystematic fashion. In our work, we built a
frame work that defines the security activities that
have to be done in all the phases of the software
engineering process from the specification of the
requirements to the deployment with a deep look in
each phase for the security activities that have to be
done.

3 Major Components of Security
Engineering
Before looking into security activities in each phase
of our security process (next section), we have a
short look at the major components of security
engineering, which are almost unknown for a
software engineer. They are important to determine
the software’s Security needs. First, one has to
define the security goals based on actual needs, and
only then review the entire system and security
policies with the goals in mind.
Steps for making a secure system are [2]:
1- Security Assessment
2- Security Design
3- Security Implementation
4- Security Monitoring

3.1 Security Assessment
Conducting Security Assessment provides detailed
recommendations for identifying, correcting and
preventing security problems. The following issues
are involved: Asset Identification, Threat
Assessment, Laws, Regulation and Policies,
Personnel, Reporting and Follow-up, Tools, and
Training Certification.

3.2 Security Design
The Security Components are divided into two main
categories, the physical and logical parts. Physical
Security includes elements like Buildings, Devices
(e. g. Network Devices, Equipment, Cables,
Communication devices, Servers, Routing
Equipment and other Hardware devices), and
Human (internal and external). On the other hand,
the logical Security includes the Application
Security, Operational Security, systems, Acceptable
Use Policy (AUP), Intrusion detection /prevention
/recovery, use procedures, authentication,
identification, privacy, integrity, non-repudiation,
encryption Backups, Risks, Assessment, access
control list (ACL), Access Cards, Virtual Private
Network (VPN) and Biometric Authentication.

3.3 Security Implementation
For all of these components, there are a lot of
policies from a Security engineering perspective that
have to be considered.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 20

3.4 Security Monitoring
There is much more to security analysis than code
review. There are some Methods for performing
that, like architectural security analysis, attach trees,
source code auditing and others [10].

4 Software Engineering for Security
The vast majority of software developers continue to
focus on code. Software security is fundamentally a
software engineering problem, encompassing
producing and evaluating secure software.
Developing secure software needs support from all
aspects of software processes, methods, and tools. A
majority of security incidents result from defects in
software requirements, design, or code.
Specification errors can be easier and cheaper to fix
in the early stages – using analysis tools.
How is Security Viewed in Software Engineering? It
is a Non-functional requirement, an Emergent
property, an Aspect of dependability, to use security
mechanisms for the implementation of the security
policies.
We must engineer security into software as an up
front requirement rather than a last minute thought
to recognize that exploits/vulnerabilities are results
of flawed design or implementation.
The overwhelming majority of existing software,
even software for security-critical systems, has been
built and is being built in an ad hoc, unsystematic
fashion.
We have to consider carefully the security aspects of
the software product from the beginning with
requirements and moving on through later lifecycle
activities, ending with deployment and
administration of the software product.

4.1 Requirements for a secured system
The requirements of a specific security system can
only be determined after detailed consideration of
the business context, user preferences, and the
defense posture of the software system.
A security requirement is a manifestation of high-
level policies into the detailed requirements of a
specific software system. The security specification
process which leads to the early stage of the
software process lifecycle is shown in figure 1 [3].
The following are the Stages of security
specification: A) Asset identification and evaluation;
which assets (data and programs) and their required
degree of protection are identified. The degree of
required protection depends on the asset value so
that a password file (say) is more valuable than a set

of public web pages. B) Threat analysis and risk
assessment, the possible security threats are
identified and the risks associated with each of these

Figure 1: specification process of security

threats is estimated. C) Threat assignment; the
identified threats are related to the assets so that, for
each identified asset, there is a list of associated
threats. D) Technology analysis; the available
security technologies and their applicability against
the identified threats are assessed. E) Security
requirements specification; the security
requirements are specified. Where appropriate, these
will explicitly identify the security technologies that
may be used to protect against different threats to
the system. They include the following types of
security requirements: Identification requirements,
Authentication requirements, Authorization
requirements, Immunity Requirements, Integrity
Requirements, Intrusion detection requirements,
Non-repudiation requirements, Privacy
requirements, Security auditing requirements, and
system maintenance security requirements.

4.2 Modeling for a Secured System
The second design phase focuses on clarifying the
model of the system and the security requirements.
Dependencies between the assets of the system must
also be identified based on the information gathered
in the security requirements phase to select or design
the appropriate analysis and security design.
For the security analysis and security design part of
the process, it is important to ensure that expert
knowledge is available in order to identify threats
and countermeasures. Designers of secure software
systems can have a number of distinctive goals
including: design to defend after initial security

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 21

violation(s), architecturally eliminate possibilities
for violations.
Some of the architectural styles or style elements
could include: Reference monitors, Multiple
Independent Levels of Security (MILS), Multiple
Single Levels of Security (MSLS), Distributed
access control, Tolerant – to (partial) attacker
success – including “self healing” approaches,
Adaptive distributed reconfiguration responses to
attacks, Compartmentalization via Virtual machines,
Separation via encryption, Physical separation,
Separation except at point of use Filters, guardians,
and firewalls.

4.3 Construction for a Secured System
Secure software construction creates working,
meaningful, secure software through design, coding,
verification, unit testing, integration testing, and
debugging [5]. Some vulnerabilities in software
systems occur with such great frequency they have
been deemed “common vulnerabilities.” To
effectively avoid vulnerabilities, one must fully
understand the types of weaknesses that enable
them. We have to use Security Principles in Secure
Coding like Input Validation, Preventing Buffer
Overflow, Anti-Tamper Technologies, and the use
Secure Coding Standards, etc.

Our Research Model should describe the detailed
security activities that have to be done in each phase
of the development of the security critical software
product. In the following two sections of this paper,
we show two different approaches dealing with
security critical software development.

5 Systems Security Engineering
Capability Maturity Model (SSE-
CMM)
In comparison to our work, we show the SSE-CMM,
which is a process model that can be used to
improve and assess the security engineering
capability of an organization [7]. The SSE-CMM
provides a comprehensive framework for evaluating
security engineering practices against the generally
accepted security engineering principles. By
defining such a framework, the SSE-CMM, provides
a way to measure and improve performance in the
application of security engineering principles. The
SSE-CMM has been adopted as the ISO/IEC 218.
The stated purpose for developing the model is that,
although the field of security engineering has several
generally accepted principles, it lacks a
comprehensive framework for evaluating security

engineering practices against the principles. The
SSE-CMM, by defining such a framework, provides
a way to measure and improve performance in the
application of security engineering principles. The
SSE-CMM also describes the essential
characteristics of an organization’s security
engineering process. The model is organized into
two broad areas: Security Engineering, and Project
and Organizational processes. Security Engineering
in turn is organized into Engineering Processes,
Assurance Processes, and Risk Processes. There are
22 Process Areas distributed among the three
categories. Each Process Area is composed of a
related set of process goals and activities [7]. The
International Systems Security Engineering
Association (ISSEA) maintains the SSE-CMM
(Figure 2).

Figure 2: The SSE-CMM

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 22

The SEE-CMM is a straightforward analysis of the
existing processes to determine which base process
have met and the maturity levels they have achieved,
which is not simple and may involve interactions
with engineers who actually use the process.

6 Security Quality Requirements
Engineering (SQUARE) Methodology
Another comparable methodology to our work is the
Security Quality Requirements
Engineering (SQUARE) Methodology for eliciting
and prioritizing security requirements in software
development projects, which was developed by the
Software Engineering Institute’s Networked
Systems Survivability (NSS) Program [8]. The
methodology’s steps are explained, and results from
its application in recent case studies are examined.
The Methodology consists of 9 steps to elicitate the
requirements (step 1: Agree on Definitions, Step 2:
Identify Security Goals, Step 3: Develop Artifacts,
Step 4: Perform Risk Assessment, Step 5: Select
Elicitation Technique, Step 6: Elicit Security
Requirements, Step 7: Categorize Requirements,
Step 8: Prioritize Requirements, Step 9:
Requirements Inspection). Each step is evaluated
using Inputs, the used Techniques, the Participants
and the Outputs of the step.

The SQUARE) Methodology concentrates on the
requirement phase in software development, which
is only a part of the overall process.

7 Conclusion
The Development of secured software gives us the
interaction between two disciplines, software
engineering and security engineering. At a software
engineering process we have to consider the security
aspects in all of the phases of the Software
development process from specification of the
requirements until construction. This consideration
of all of the security aspects should not be an ad hoc
solution to the software problem (as in most cases).
Some standards exits in the area of the development
of secured systems, but many research areas still
need to be discussed. The need for more secured
systems urges us to look deeper into software
engineering processes to build better frameworks for
them. That means, there is growing need to
incorporate security engineering into standard
analysis and design processes and security
requirements must not be left to be dealt with as a
side-issue, or an afterthought. Some existing

methodologies are looking either on existing process
like the SEE-CMM or concentrating only on some
parts of the software engineering process like the
(SQUARE) Methodology.
In our work, a framework for all of the software
engineering activities should be built with a deep
consideration of the security activities in each phase.

References:
[1] Devanbu, T & Stubblebine, S., Software

Engineering for Security: A Roadmap,
Proceedings of the 22nd International
Conference on Software Engineering,
2000,Pages: 227 - 239.

[2] Estublier, J. Software configuration

management: a roadmap, Proceedings of the
22nd International Conference on Software
Engineering, 2000, Pages: 279 - 289.

[3] Sommerville, I., Software Engineering, 6th
Edition, Prentice-Hall, 2000.

[4] Redwine, S., Secure Software Assurance, US
Departments of Homeland Security and Defense,
https://buildsecurityin.us-cert.gov, 2006,
accessed 10/09/2006.

[5] Abrams, M. D., Security Engineering in an
Evolutionary Acquisition Environment. New
Security Paradigms Workshop, Proceedings of
the 1998 workshop on New security paradigms,
Virginia, United States, 1998, Pages: 11 - 20

[6] Flechais, I, Angela, M., Sasse, S. & Hailes, M.,

Bringing Security Home:A process for
developing secure and usable systems,
Proceedings of the 2003 workshop on New
security paradigms, Ascona, Switzerland, 2003,
Pages: 49 - 57

[7] Software Engineering Institute at Carnegie
Mellon (SEI) , ”Technical Program Report”,
http://www.sse-cmm.org, 2003, accessed
21/07/2006.

[8] Mead, N., Hough, E. & Stehney, T.,
SEI,TECHNICAL REPORT CMU/SEI-2005-
TR-009, http://www.sse-cmm.org,
2005,accessed 12/08/2006. .

[9] Jurjens, J., Secure Systems Development with
UML, Springer Verlag-Berlin, 1998.

[10] Viega, J. & McGraw, G, How to avoid
Security Problems the right way, Addison-
wesley, 2002.

[11] Information Security Breaches Survey,
Technical Report, Department of Trade and
Industry, www.pwc.com/uk/eng/ins-sol/publ,
2000, accessed 05/12/2006

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 23

https://buildsecurityin.us-cert.gov/

