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Abstract - This paper proposes a variation of Decision Diagram, the 2VRMBDD.  It outlines the background 
for RMBDD expanded with respect to one variable and the new 2VRMBDD when the expansion is with 
respect to two variables.  An example is realised using 2VRMBDD and implemented using Reed-Muller 
Universal Logic Modules (RM-ULM).  The resulting solution is variable order dependent.  Lastly the total 
number of possible solutions is outlined in this paper. 
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Circuits Minimisation. 
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1 Introduction 
Decision Diagrams (DD) were first introduced by 
Akers [1] and were then further improved by 
Bryant [2].  DDs are graphical way of representing 
switching functions and provide an alternative 
optimisation technique to the use of Karnaugh 
maps, truth tables and algebraic representations [3]. 

 (1) 

⊕  denotes modulo-2 addition  
iP  denotes a product term There are many advantages in expressing switching 

functions using Reed-Muller expansions.  
Exclusive-OR (EX-OR) realisations are easily 
testable [4].  Secondly, it can often lead to more 
efficient solutions than the standard Boolean 
function realisation, in terms of number of gates or 
number of gate connections [5,6]. 
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 There are  Fixed Polarity RM expansions where 
each variable can be true or complemented but not 
both. 

n2
Reed-Muller Binary Decision Diagrams (RMBDD) 
can be used to realise multi-level representations of 
Generalised Reed-Muller (GRM) expressions [7,8].  
Being a counterpart of Binary Decision Diagrams 
(BDDs), in RMBDD realisation, a function, , is 
initially expressed in a tree format, called the Reed-
Muller Binary Decision Tree (RMBDT).  Merger 
and Deletion operations are then employed in order 
to achieve a Reduced Ordered Reed-Muller Binary 
Decision Diagram (RORMBDD).   

 
Definition: RMBDT is a graphical representation of 
a RM expression and contains non-terminal nodes, 
terminal nodes and edges.  The terminal nodes, also 
known as leaves, contain 0’s and 1’s.   

f

 
Non-terminal nodes are represented by circles 
labelled with the splitting variables. 
  
According to Shannon [9] expansion, a RM 
expression  can be expanded with respect to any 
variable  as shown in Equation (2): 

f2  Principle of RMBDD 
ixA given -variable Reed-Muller expansion can be 

expressed as follows: 
n
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If is present in its true form throughout the 
GRM expansion, it is called the Positive Davio or 

Positive Polarity, where  [10].  Substituting 

•

ix

ii xx =
•

1⊕= ii xx  Figure 1 Reed-Muller Function Realised into Two 
Branches 

 in Equation 2 gives: 
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Once a RMBDT is drawn, it is operated upon using 
the Merger and Deletion operators in order to 
obtain a Reduced RMBDD.  The RMBDD is said 
to be Reduced if and only if both the operations are 
not applicable to that RMBDD.  The Reduced 
RMBDD is Ordered if the same variable(s) is (are) 
used at each level, forming the RORMBDD. 

(3) 

 
 

If the splitting variable is present in its 

complemented form, where 

•

ix In Fixed Polarity RM expression realisation, it 
means that a variable has to exist either in Positive 
or Negative Polarity.  Therefore, within the same 
level, the variable(s) used is (are) of the same 
polarity. 

ii xx =
•

, throughout 
the GRM expansion; it is called a Negative Davio 
or Negative Polarity [10].  By substituting 

 1⊕= ii xx  in Equation 2, the following equation 
is obtained: The final RORMBDD obtained can then be directly 

mapped onto hardware implementation diagram 
with the use of RM-ULMs.  
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2.1 Variable Order (4) 
As in Standard Boolean BDDs, the size (measured 
by the number of non-terminal nodes) of a ROBDD 
is heavily affected by its variable orderings.   
 

 In the RM domain, any -variable GRM 
expansion has  possible RORMBDDs, each of 
which is generated with a different variable 
ordering. 

n
The above is illustrated in Figure 1, where a RM 
expansion is expanded using Shannon equation 

with respect to any splitting variable , as 
indicated in the non-terminal node.  This is 
repeated until the sub-functions are reduced to 
logical ‘1’ and ‘0’.  

!n
•

ix
 
This property of BDD in both Standard and RM 
domains has been extensively researched world-
wide in the past decades.  Techniques that have 
been developed so far have only managed to 
produce an ordering of ‘near-best’ solutions, with 
minimal OBDD size [7,8, 11-14].  Exhaustive 
search is still the only way to find the minimum 
solution.   

X in Figure 1 is equal to 0 if 
acts as the splitting variable but is equal to 1 if ix

ix is used. 
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3  2-Variable RMBDD  
2. Node Deletion The advantage of optimisation using BDD is the 

direct implementation of non-terminal nodes using 
2:1 Universal Logic Modules (ULM) having the 
splitting variable acting as a control input [12]. The 
equivalent digital multiplexer used for RMBDD 
implementation is RM-ULM [15].  Given the same 
function, it can be expanded using two variables at 
each level instead and these two variables can be 
used as the control inputs of a 4:1 RM-ULM 
[12,16].  The use of 4-input ULM modules requires 
less levels and modules for the implementation of a 
given function at the cost of larger modules.   

If any of the ’s high edges is pointing to a 
logical ‘0’, it means none of the true form of 
the said variables exists at all.  Therefore the 
node can be deleted and its incoming edge is 
directed to its ‘00’ sub-branch, Figure 3(a) and 
3(b). 

ji xx

 00 00 
 
 

 

3.1 Two-Variable Realisation  
A given RM function can be expanded with respect 
to any two variables at a time.  The sub-functions 
will be continuously expanded until they reach 
logical ‘0’ or ‘1’.  If the number of variables is odd, 
then a single variable is used first. 
 

3.2 The Procedures 
1. Merger 

If two non-terminal nodes have any of their 
outgoing branches pointing to similar sub-
branch, , then the said sub-branch can be 
shared.  

nm xx
Figure 2 shows an example of sharing 

non-terminal node of . nm xx
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2  Elimination of a 2-Variable Node 

 
 
 
 
 

 

 
 

Figure 3  a) Two-Variable Node Deletion 

 
 

 

 
 
 
 
 
 
 

Figure 3 b) Single-Variable Node Deletion 

Example: 
Consider a four-variable example taken from [7]. 

0120102

0123301231 ),,,(

xxxxxxx

xxxxxxxxxf

⊕⊕⊕

⊕⊕⊕=
 (5) 

 
The RORMBDD solution for   obtained with 
single variable expansion is shown in Figure 4(a) 
and the K-map equivalent is shown in Figure 4(b). 
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Figure 4 a) RORMBDD for . using single variable 

nodes. b) Karnaugh-map equivalent for . 
1f

1f

 
The 2VRORMBDD solution for  is shown in 1f
Figure 5(a) and the K-map equivalent of the 
2VRMBDD solution is shown in Figure 5(b). 
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Figure 5  2VRORMBDD for . a) using 2-variable 

nodes. b) Karnaugh-map equivalent for . 
1f

1f

 
Figures 4(a) and 5(a) result in the RM-ULM 
implementations given in Figures 6(a) and 6(b) 
respectively. 
 
 
 
 

 
),,,( xxxf  01231 x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 6  ULM diagrams for  using a) 2:1 ULMs 
and b) 4:1 ULMs. 

1f

 
The example above shows that the ULM layers and 
the number of nodes required have been reduced.  
This leads to the reduction of the number of ULM 
modules required if a given function is drawn using 
a 2VRMBDD, compared to single variable 
RMBDD, with the penalty of using larger modules. 
 
The logic diagrams for the RM-ULMs used in 
Figures 6 (a) and 6(b) are given in Figure 7. 
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 If  is odd, ( ), single variable node is used at 
the top level, then 2 variable node at the second 
level down and so on.  The   is therefore:  

n 3≥n
 
 

ntc
 
 ( ) ( )

⎥
⎥

⎦
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⎡ −−
= −

2
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!!2!!1
nno

nn
ntc     (6)  

 
a For even values of , where , the given 

function is realised using 2 variable nodes at each 
level, the  is found to be:  

n 4≥n
 
 

ntc 
 

22

!)!1(!!
nne

nntc −
=     (7) 

 
 
 Table 1 shows the difference between  and  

for  of up to 20. 
!nntc

 n 
b  

Figure 7  RM-ULM Logic Diagrams for  a) 1-
Variable RM-ULM and  b) 2-Variable RM-ULM. 

Table 1 Difference between the total variable orders 
for single and 2VRMBDD 

Total variable 
orders with single 

VRMBDD, 

Total variable orders 
with 2VRMBDD, 

 Number of 
variables, Different variable orders produce different sets of 

RORMBDD, as in single variable RMBDD.  n ntc  !n  
Figure 8 shows the 2VRORMBDD for function  
with  variable order: 

1f 3 3 6 

0213 , xxxx 4 6 24 
5 30 120 

13 xx  

10 

),,,( 01231 xxxxf  

00 
01 

11 

a 

02 xx  

1 

10 01 00  
0 1 0 

02 xx  

1 

10 01 00 11 

1 1 0 

02 xx  

0 

10 01 00 11 

1 0 1 

0

6 90 720 
7 630 5040 
8 2520 40320 
9 22680 362880 

10 113400 3628800 
11 1.20E+06 39916800 
12 7.48E+07 4.79E+08 
13 9.70E+07 6.23E+09 
14 6.80E+08 8.72E+10 
15 1.20E+10 1.31E+12 
16 8.20E+10 2.09E+13 

Figure 8  2VRMBDD with different variable 
ordering for . 

17 1.39E+12 3.56E+14 
1f 18 1.25E+13 6.4E+15 

 19 2.38E+14 1.22E+17 
20 2.38E+15 2.43E+18 

4 Single VRMBDD and 2VRMBDD 
 Each Boolean function  with  variables has  

GRM expansions.  Each of these GRM expansions 
has  variable orders if single variable RMBDD is 
used.  Whereas in 2VRMBDD, the total number of 
possible variable orders  of each GRM 
expression is governed by whether  is odd or 
even number. 

n n2f

5 Conclusion  !n
The proposed 2VRMBDD is an alternative 
RMBDD form.  It results in the reduction of ULM 
levels and hence shorter path for the signal to 
travel.  It also reduces the number of possible 
variable orders for a given function.  The variable 
order within a given level is found to have no effect 

ntc
n
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