
Hardware Cost Analysis of Master-Slave Star-Ring
Super-Hypercube and Master-Slave Super-Super-Hypercube

4-Cube Architectures

M. Amiripour, H. Abachi and K. Dabke
Monash University

Department of ECSE
Wellington Rd, Vic

AUSTRALIA

Abstract: This paper describes and compares the hardware cost analysis of two newly proposed topologies. The
fundamental structure of these architectures is outlined to help define the number of nodes and the number of links
in each architecture. This leads to the derivation of the total system costs. Simulation and mathematical modeling
of these architectures are presented and the cost comparisons are given in a graphical form which highlights the
merits and demerits of each topology.

Key–Words:Hardware Cost, Multiprocessor System, Super-Hypercube,MS2RSH andMS3H4-Cube architec-
tures.

1 Introduction

During the last decade, computing systems have be-
come a necessary engineering tool for scientists to un-
derstand and solve complex problems. These include
space programs, military applications, nanotechnol-
ogy, weather forecasting, image and signal process-
ing. These applications are usually characterized by
massive and long-running application programs. In
addition, the larger a system becomes, the more diffi-
cult it is to make it more reliable and efficient. There-
fore, reliability, availability, flexibility, compatibility
and fault tolerance, cost reduction and scalability of
a distributed system will become important aspects
in many computing environments. As part of perfor-
mance evaluation, the authors have tackled a critical
aspect of this evaluation, namely cost analysis of two
proposed topologies in message passing architectures.
The main aim of this research is to identify and high-
light the advantages these architectures offer and the
ways in which they are most suited to different appli-
cations.

2 Master-Slave Star-ring Super-
Hypercube Architecture

In this paper the authors have developed two new
architectures for cost analysis and comparison pur-
poses. The first topology is called the Master-Slave

Star-Ring Super-Hypercube Architecture which is ab-
breviated asMS2RSH and the second scheme, due
to the nature of its topology, is named Master-Slave
Super-Super-Hypercube 4-Cube architecture which is
abbreviated asMS3H4-Cube. The former architec-
ture which represents a true multiprocessing method
consists of the combination of star and ring topology.
In this architecture (Figure 1), the master processor
is at the centre of the ring and by having connec-
tions through Routers, it can provide fast and reliable
communication access to each satellite node. This ar-
chitecture is constructed to perform simultaneous and
concurrent processing activities.

The principal architecture of each satellite node
is based on the Super-Hypercube (SHP) architecture
as shown in Figure 2. Super-Hypercube topology is
a Hypercube obtained by the addition of a router in
the middle of the Hypercube with one connection to
each node. One problem with the traditional hyper-
cube is when communication between two indirectly
connected nodes is required [1]. This occurs when a
message has to travel along one or more hyper-planes
which indicates that it must go through intermediate
nodes, before reaching its destination. Thus, each pro-
cessing node is required to compute and handle mes-
sage routing, which reduces performance. One of the
solutions to this problem is to use a Router (R) that
routes all indirect messages.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 115

Figure 1: Master-Slave Star-Ring Super-Hypercube
Architecture

Figure 2: Super-Hypercube Architecture

2.1 MS2RSH Network Modeling

2.1.1 Number of Links and Number of Nodes
Calculations

For the MS2RSH, there is a star of SHP where
the total number of processing nodes (NN) is given
as the product of Super-Hypercube and star nodes:
NN

MS2RSH
= 2hshp × n

wheren is the number of star nodes. To calculate

the number of the communication links (NL) for the
MS2RSH topology, one has to consider the exis-
tence of the Router and its connectivity. To this end
one can partition the proposed model into a star, ring
and SHPs. In theMS2RSH architecture as shown in
Figure 1, there aren SHPs, and the number of links in
the star configuration isn−1. So for the ring connec-
tion the number of links isn− 1 (bearing in mind that
star topology hasn nodes). If each SHP hasNLSHP

links, then the total number of links is:
NL

MS2RSH
= 2 × (n − 1) + n × NLSHP

.
To calculate the total number of links within a

SHP topology, one needs to consider the following
cases:
a) The number of links connecting processing ele-
ments together which ishshp2

hshp−1 and
b) additional number of connections from Router to
each processing element which yields2hshp . Adding
these two combinations results in:
NLSHP

= hshp2
hshp−1 + 2hshp .

This gives an expression for the number of links
for the entireMS2RSH, which is dependent on the
number of star nodes, and SHP dimensionality, This
results in
NL

MS2RSH
= (hshp2

hshp−1 + 2hshp)n + 2(n − 1).

2.1.2 MS2RSH Hardware Cost Analysis

Since in any computer systems’ engineering environ-
ment, component cost dominantly depends on the eco-
nomic factors, they play an important role on in the
determination of the cost parameter. Therefore, it is
difficult to precisely define it. In general, overall total
system cost estimate (CTSC) will be dominated by the
total node related cost (CTN) and the total communi-
cation link cost (CTL) [2]. Therefore,
CTSC = CTN + CTL.

In this cost analysis, it is assumed that each node
consists of a Central Processing Unit (CPU), memory
unit, and I/O ports which provide interfacing to the
network. The total node cost is the product of the unit
node cost (CN) and the number of nodes (NN). Hence
the total processing node cost isCTN = CNNN .

The most common assumption in identifying the
nature of the link is to consider it as being in the form
of an interconnection medium such as parallel wires
which join the nodes together. This is one of the most
appropriate modes of receiving and transmitting sig-
nals in a communication environment. The total com-
munication link cost is the product of the unit link cost
(CL) and the number of links (NL) connecting nodes,
which givesCTL = CLNL.
Therefore, the total system cost is
CTSC = CNNN + CLNL.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 116

However, applicability of a system is normally
evaluated in terms of its suitability and the cost ef-
fectiveness of the architecture for a given application.
This is evaluated in terms of the total system cost com-
pared to the total processing node cost. One can make
this assumption because such a figure describes how
close a particular network is to the ideal lowest cost
network where there are no communication link over-
head costs (i.e.CL = 0, giving CTSC = CNNN).
Thus one can normalise the total system cost function
CTSC , by CNNN . Therefore,
KST = CTSC

CN NN
= KLNL

NN

whereKL = CL

CN
.

The normalised total system cost,KST , then
gives us the total system cost relative to the lowest
theoretical system cost. In practiceKL will vary from
near zero for a tightly coupled multi-processor system
to less than one for a distributed computer network.
For tightly and closely coupled multi-processor sys-
tems, it has been suggested thatKL = 0.1 is a reason-
able value [3]. We shall explore normalised system
cost for values ofKL = 0.1. Based on the result of
NL for MS2RSH, theKST can be formulated as fol-
lows:
KST

MS2RSH
= 1 + KLNL

2
hshpn

therefore,

KST
MS2RSH

= 1 + KL
[(hshp2

hshp−1
+2

hshp)n+2(n−1)]

2
hshpn

.
After further simplification,KST

MS2RSH
can be ex-

pressed as
KST

MS2RSH
= 1 + KL[

hshp

2 + 1 + (n−1)

2
hshp−1

n
].

3 Master-Slave Super-Super-
hypercube 4-Cube Architecture

The fundamental concept of this new architecture is
based on the Super-Hypercube architecture. In this
architecture each processing element in each Super-
Super-Hypercube which contains the master Router
R11, is itself a Super-Hypercube with the RouterR111

as shown in Figure 3.
The processing elements surrounding RouterR111

is called satellite slave. In general, the over-
all control and management of the system is car-
ried out by a master processor labeled ”Master”.
For this reason the overall architecture is called
Master-Slave Super-Super-Hypercube 4-cube archi-
tecture (MSSSH4-Cube), or further abbreviated as
MS3H4-Cube.

As can be seen from Figure 3, the addressing
label for the processing element of each satellite slave
processor starts with the suffix of the main router
(R11) which belongs to that Super-Super-Hypercube

and then is followed by the suffix of the router
within the satellite slave processor (R111). This is
then followed by the slave processor number. For
example, a string of labels could be presented as
R11R111S1, R11R111S2, R11R111S3, R11R111S4, . . . ,
R11R111S8 for the satellite slaves of the first Super-
Super-Hypercube configuration in the top left corner
in Figure 3. The building block of each processing
element and the router proposed for these new
architectures are based on the technology developed
by Silicon Graphics Inc (SGI). It is believed that
the availability of the existing products and the
continuous support for the future upgraded products
will provide a suitable test-bed for this investigation.
Although SGI has many products that are specifically
designed to be used in multiprocessor environment,
the most recent and suitable architecture (SGI 4700
series) has been recommended for this architecture
[4]. The operation ofMS3H4-Cube architecture in
a massively parallel processing system can best be
explained as follows. The main role of the master
processor is the task allocation and overall manage-
ment and control of the system. The master processor
is intended to have the latest version of the processing
element and the largest memory capacity in order to
have full control of the overall system management.
Once the main task is divided into multiple subtasks,
then it is placed in the main memory of the master
processor.

As the practical option
one considers that each Router
(R11, R111, · · · , R11, R118, R12, R121, · · · , R12, R128)
has processing capability and memory facility, so that
the subtask could be saved in the memory of each
Router (for example first inR11 and then inR111),
before reaching its final destination inR11R111S1.
In reality, one can consider the Routers as co-master
processors in this arrangement.

The advantage of this assumption is that if there
is hardware or software fault within the master pro-
cessor, the overall system is not subject to a catas-
trophic failure. The transfer of information can take
place through a direct connection that is provided for
this purpose. Implementing this approach facilitates
the following task allocation in the proposed architec-
ture.

First the main task is divided into multiple sub-
tasks and then in blocks (normally multiples of eight,
since each satellite slave configuration consists of
eight processing elements) which are allocated to
each Router (co-master processor) within each Super-
Super-Hypercube, namely toR11, R12.

Then these co-master processors would transfer
a minimum of eight subtasks to each corresponding
routers (second level co-master processors) within the

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 117

Figure 3:MS3H4-Cube Architecture.

satellite slave configuration i.e.R111, · · ·, R118, R121,
· · ·, R128. Once these subtasks are allocated to the
second level co-master processors then the next phase
would be their allocations to the processing elements
(namely R11R111S1, R11R111S2, · · ·, R11R111S8,
R12R121S1, R12R122S1, · · · andR12R128S8.

These processing elements
R11R111S1, R11R111S2, · · · , R12R121S1, R12R121S2,

· · · , R12R128S1, · · · , R12R128S8 (for overall con-
figuration) would then start simultaneous execution
of these subtasks. However, upon completion
of their current subtask, processing elements
would send an interrupt request signal through
R111, R112, R113, · · · , R118, R121, R122, · · · , R128 to
R11 and R12 to request the allocation of the next
available subtask. After completion of each subtask
the results are saved in second level co-master proces-
sors as well as in the co-master processors and also
in the main memory of the master processor. This
precaution is taken to minimize a catastrophic failure
that could result if the master fails. This procedure
of sub task allocation would continue, until all the
subtasks that are currently allocated to each co-master
processor are allocated to and executed by the
processing elements. Once co-master processor runs
out of the subtasks, then a new set of subtasks would

be allocated by the main master to each co-master
processorR11 and R12 and this procedure would
continue until all the subtasks are completed by the
processing elements. In the case when the sub-tasks
are independent of one another and the execution
time is the same, then that could result in simultane-
ous interrupt request signals arriving at the second
level co-master processors and consequently by the
co-master processors. This simply indicates request
for the allocation of new subtask to each processing
element. In this situation, through either hardware
or software arrangements, the system designer can
allocate interrupt priority arrangement which could
reside in the master and co-master processors so that
each processing element would receive a new subtask
according to the allocated priority scheme. In order
to further improve the allocation of sub-tasks and
consequently the performance of the overall system,
one can incorporate some degree of intelligent
decision-making, for example, using an expert system
or a neural network within the operating system of
the master processor [5]. So this arrangement would
provide an automatic allocation of the tasks and
therefore other control and management procedures
would be significantly improved.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 118

3.1 Mathematical Modeling of MS
3
H4-

Cube Architecture

3.1.1 Number of Nodes, Number of Links Calcu-
lation for MS3H4-Cube

In this model since every Super-Super-Hypercube has
a co-master which is connected to the router of each
satellite slave configuration, then, each satellite slave
has one extra link which is connected to co-master
processor. Therefore, number of links for satellite
slave is:
NLSattelite−Slave

= number− of − links−SHP + 1
or,

NLSattelite−Slave
= hshp(2

hshp−1) + 2hshp + 1.
Moreover, since in this configuration, the co-

master processors of all Super-Super-Hypercubes are
connected together in pairs, therefore, the number of
links NL for aMS3H4-Cube is:

NL
MS3H4−Cube

= (number − of − links − satellite − slave)
× (number − of − nodes(MS3H4 − Cube))
+ (number − of − links − SH − 4cube)
+ (1 − link − between − co − masters).
Therefore,

NL
MS3H4−Cube

= (hshp(2
hshp−1) + 2hshp + 1)2hhp +

(hhp2
hhp−1 + 2hhp + 1) (without considering master

processor) where number of nodesMS3H4 − Cube,
NN

MS3H4−cube
=2hhp2hshp .

Since, in our model, there is a connection between
the master processor and each co-master processor,
hence we have:
NL

MS3H4−Cube
= (hshp(2

hshp−1) + 2hshp + 1)2hhp

+ (hhp2
hhp−1 + 2hhp + 3).

3.1.2 Total System Cost for MS3H4-Cube

Based on the cost metrics formula, the total system
cost forMS3H4-Cube is as follows:

KSTN = 1 + KLNL

NN
.

Using the values ofNL and NN from section
3.1.1 we obtain,

KSTN

= 1+KL
(hshp(2

hshp−1
)+2

hshp+1)2
hhp+(hhp2

hhp−1
+2

hhp+3)

2
hhp2

hshp

= 1+KL
(hshp(2

hshp−1
)+2

hshp+1)(2
hhp)+((hhp2

hhp−1
+2

hhp+3))

2
hhp2

hshp

= 1 + KL

2
hhp (hshp(2

hshp−1
)+2

hshp+1)+(
hhp

2
+1+ 3

2
hhp

)

2
hhp2

hshp

= 1+KL[(1+(
hshp

2))+(1

2
hshp

)[(
hhp

2)+(3

2
hhp

)+2]].

Table 1 shows theMS2RSH and MS3H4-Cube
networks metrics.

Table 1: MS2RSH and MS3H4-Cube networks
metrics.

Architecture MS2RSH MS3H4−Cube

NN 2hshpn 2hhp2hshp

NL (hshp2
hshp−1+

2hshp)n +
2(n − 1)

(hshp(2
hshp−1)+

2hshp +1)2hhp +
(hhp2

hhp−1 +
2hhp + 3)

KST 1+KL[
hshp

2 +

1 + (n−1)

2
hshp−1

n
]

1 + KL[(1 +

(
hshp

2)) +

(1

2
hshp

)[(
hhp

2) +

(3

2
hhp

) + 2]]

Figure 4 shows the total system cost for
MS2RSH andMS3H4-Cube architectures.

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 1 10 100 1000 10000

T
ot

al
 N

or
m

al
is

ed
 S

ys
te

m
 C

os
t

PEs

MRSSAH,h=3
MS3H4CUBE

Figure 4: Total System Cost forMS2RSH and
MS3H4-Cube withKL = 0.1 as a function of pro-
cessing elements (PEs).

4 Conclusion
In this paper two newly proposed and developed ar-
chitectures, namely Master-Slave Star-Ring Super-
Hypercube (MS2RSH) and Master-Slave Super-
Super-Hyper 4-Cube (MS3H4-Cube) architectures,
are presented. The architectures and their operations
are described. This is followed by a mathematical
model for their cost evaluations. Mathematical sim-
ulations for these architectures and the results of the
total system cost for the case ofKL = 0.1 are de-
picted in Figure 4. As can be seen from this, the start-
ing number of processing nodes inMS3H4-Cube
due to the nature of the topology is approximately
100. With this fact in mind the total normalized sys-

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 119

tem cost from 100 up to 2000 processing elements
(PEs) forMS3H4-Cube topology is superior to that
of MS2RSH architecture. On the other hand, in
these architectures when the number of PEs exceeds
2000 it can be seen that the normalized system cost
rises linearly with system size (forMS3H4-Cube
topology) which is in contrast to saturating cost for
theMS2RSH topology.

References:

[1] J. Walker. J, Performance, Reliability and
Cost Analysis of Message Passing Architecture,
Master of Engineering Thesis, Department of
Electrical and Computer System Engineering,
Monash University, Melbourne 1998.

[2] H. Abachi, R. Lisner and N. Debnah, Paral-
lel Processing Modelling Methodology in Com-
puter Engineering,13th International Confer-
ence of Computer Architecture, ISCA, U.S.A.
2000.

[3] D. A. Reed, Performance Based Design and
Analysis of Multimicrocomputer Networks, PhD
dissertation, 1983, pp. 62-64.

[4] Sillicon Graphics Inc, Hardware: End-User,
Altix 3700 Bx2, System Overview, Chapter 3,
U.S.A, 2004, PP.1-6.

[5] F. H. Jordan, G. Alaghband,Fundamentals of
Parallel Processing, Prentice Hall, 2003.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 120

