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Abstract: - This paper introduces the concept of dual space for grasp stability analysis. We transform 
friction cones in the robot work space into line segments in the dual space. Grasp stability is discussed 
from a novel point of view. We newly propose the Grasp Stability Index (GSI) by calculating intersection 
condition between line segments in the dual space. Its validity and effectiveness are investigated and 
verified by simulations for a quadrangular object. 
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1  Introduction 
When an object is grasped, there are three 
constraints arising from the task, the grasped 
object and the hand. Within these constraints, 
Cutkosky [1] defined various analytical 
measures used to describe a grasp as stability, 
compliance, connectivity, isotropy, etc. Also he 
classified shapes of manufacturing grasps 
considering grasp geometry. When the grasp 
returned to its initial configuration after being 
disturbed by external forces or moments, he 
referred to that at low speeds the grasp is stable 
if the overall stiffness matrix is positively 
definite and at higher speeds dynamic stability 
must be considered. 

When being disturbed by external forces and 
moments, grasp stability shows the degree it is 
able to maintain equilibrium state without sliding 
between object and robot fingers. The high 
stability means that it will be able to maintain 
equilibrium state well. Because the stability is the 
ability which is able to resist from disturbance, 
and gives many effects to the grasp relationship 
between robot and object, many researchers have 
interest and advanced researches regarding a 
stability with various methods [2]-[7]. 

Many Studies have analyzed grasp stability by 
using potential energy and stiffness matrix. 
Funahashi et al. [2] analyzed to consider the 
curvatures of both hand and object at contact 

points by using potential energy, and showed 
that the grasp using round fingers was more 
stable than using sharp fingers. Jenmalm et al. 
[3] verified grasp stability change with different 
surface curvatures by tests. Howard and Kumar 
[4] classified the categories of equilibrium 
grasps and established a general framework for 
the determination of the stability of grasps by 
using stiffness matrix. Yamada et al. [5] 
analyzed stability of 3D grasps by using 
potential energy of a three-dimensional spring 
model by a multifingered hand. Recently 
Yamada et al. [6] analyzed stability of 
simultaneous grasps of two objects in two 
dimensions by using potential energy method. 
However, potential energy and stiffness matrix 
methods requested experiences about the work 
and have a weak point of complex calculation 
because these methods have to know active force 
and moved displacement after grasp. 

Recently, Sudsang and Phoka [7] proposed a 
method of testing whether three contact points 
form a three-fingered force-closure grasp in two 
dimensions. However, this study was limited to a 
three-fingered hand in two dimensions and 
studied only whether or not it grasps objects. 

 
This paper is limited to a two-fingered robot 

which can be used to the industrial robot and to 
the case of grasping the object which is placed 
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on the ground (two dimensions). To keep the 
analysis tractable, we assume rigid-body model 
with point contacts between the robot fingertips 
and the grasped object, no sliding or rolling of 
the fingertips, and quasi-static analysis (no 
inertial or viscous terms). 

 
This paper has an advantage by using the dual 

space which is a new method. It can decide 
grasps possibility with only form information and 
friction coefficient of an object without 
relationship with magnitude of force which robot 
fingers inflict on an object. Also it can calculate 
the Grasp Stability Index of every grasp point. 

 

 

2  Background 
2.1  Mapping between Robot Work Space 

and Dual Space 
Generally, when a robot grasps an object, 
achieving force-closure is judged by geometrical 
representation of the friction cones at the contact 
points. Sudsang and Phoka [7] studied testing 
force-closure by representing the friction cones as 
line segments in the dual plane in two dimensions. 
Mapping between a friction cone in the robot 
work space and a line segment in the dual space 
in two dimensions is shown in Fig. 1. 
 

 
Fig. 1. Mapping between a Friction Cone in the Robot 

Work Space and a Line Segment in the Dual Space. 
 

111 =+ ybxa                  (1) 
122 =+ ybxa                  (2) 

 
If we transform the two equations (1) and (2) 

into the points in the dual space, we can get two 
points  and . Using the same 
method, if we transform any equation 
(

),( 11 ba ),( 22 ba

1=+ ybxa pp ) which is in the inner friction cone, 

the transformed point is on a line segment which 
is between  and . So we can 
transform the friction cone in the robot work 
space into a line segment in the dual space. 

),( 11 ba ),( 22 ba

 
2.2  Constraint for Containing the Origin 
To transform a friction cone in the robot work 
space into a line segment in the dual space, the 
friction cone should not contain the origin. If the 
linear equation in the friction cone is on the origin, 
it is impossible to transform the equation into the 
point in the dual space. Because the y-intercept 
(1/b) must be zero when equation ( 1=+ ybxa pp ) 

contains the origin, b is infinite. Thus, we can not 
transform a friction cone into a line segment in 
the dual space. Therefore, the friction cone should 
not include the origin in the robot work space. 

 
2.3  Advantage for Dual Space 
Because of method for representing a friction 
cone in two-dimensional space as a line segment 
in one- dimensional space, we have the advantage 
of reducing a dimension. Also, we can easily 
judge the possibility of grasping an object 
through geometrical relation of two line segments. 
 
 

3  Condition of Grasping an Object 
3.1  Robot Work Space 
To judge the possibility of grasping an object in 
the robot work space, we can use the friction cone 
at the contact point. 

When two fingers of a robot grasp an object, it 
is possible for it to grasp if base point and 
homologous point are in each opposite friction 
cone. That is to say, as shown in Fig. 2, if a 
homologous point is in the inner part of the 
friction cone of base point R which is between B 
(coordinate (2, 5.73)) and D (coordinate (2, 4.27)), 
it is possible for it to grasp an object. 
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Fig. 2. Grasping an Object in the Robot Work Space. 

(R: Base Point, A~E: Homologous Points) 
 
3.2  Dual Space 
Figure 3 is the results of transforming friction 
cones in Fig. 2 as line segments in the dual space. 

In the robot work space, when a summit of the 
friction cone is on the y-axis and the inner unit 
normal vector at contact point is normal to the y-
axis, a transformed line segment in the dual space 
is parallel to the a-axis and symmetrical about the 
b-axis. Accordingly, the friction cone of grasping 
point R in Fig. 2 is transformed into line segment 
R' in the dual space that is parallel to the a-axis. 
Using the same method, we get the transformed 
line segments A', B', C', D' and E' for friction 
cones at the grasping points A, B, C, D and E. 
From this, we can infer the following fact from 
the mapping relation. 

 
Fig. 3. Grasping an Object in the Dual Space. 

(R': Line segment which transform friction cone of a 
base point R in the robot work space) 

(A'~ E': Line segments which transform friction 
cone of homologous points A~E in the robot 
work space) 

 
Fact 1: In the dual space, if two line segments 

intersect, it is possible for it to grasp an object. 
 

As previously stated, in the robot work space 
base point R and homologous points B, C and D 
are able to grasp a quadratic object. Because these 
points are transformed into line segment R' and 
line segments B', C' and D' in the dual space as 
shown in Fig. 3, we know that these are possible 
to grasp the object. However, base point R and 
homologous points A and E are unable to grasp 
the object. Because these points are transformed 
into line segment R' and line segments A' and E' 
in the dual space as shown in Fig. 3, we know 
that these can not grasp the object. 

Therefore, if two line segments intersect in the 
dual space, robot can grasp the object without 
slippage. It is easier to judge grasp of the object 
in the dual space than in the robot work space, 
because of visual representation (intersection of 
line segments). 

 
3.3  Solution for the Problem of Origin 

Constraint 
When the friction cone includes the origin in the 
robot work space, in accordance with constraint 
for containing the origin it is impossible to 
transform the friction cone into the line segment 
in the dual space. A method of solving the origin 
constraint is parallel translation of the object 
along the y-axis. After parallel translation, the 
length of the transformed line segment has to 
keep constant ratio a/b in Fig 4. The method of a 
parallel translation is given in the following 
contents. 

1) Selecting a base point on the outline of an 
object. 

2) Locating the object in order to be 
perpendicular between the inner unit normal 
vector at a base point and y-axis in the robot 
work space. 

3) If the friction cone of a homologous point 
includes the origin, we should relocate the 
object. When the unit normal vector of the 
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homologous point indicates a positive y-axis, 
then we let parallel translation the object 
toward a negative y-axis. If the vector 
indicates a negative side, then we let parallel 
translation the object toward a positive side. 
Only a base point always isn't on the origin. 
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Fig. 4. Changing the Origin. 

 
Figure 4 shows that the ratio of length between 

a and b is regular despite parallel translation. 
 

h
b
a

b
a

==
2

2

1

1                   (3) 

 
As shown in Fig. 4(a), the object is translated 

along the y-axis with 4, and the values of a, b in 
the dual space are translated , 5774.01 =a 11 =b  
into , . But the values of  
of (3) is regular as 0.5774. 

1155.02 =a 2.02 =b h

 
 

4  Grasp Stability Index 
In the former section, we found out that 
intersection of line segments which transform 
friction cones of a base point and homologous 
points means possibility of grasping the object. 
Although it is possible to grasp by intersection of 
line segments, grasp stability is quite different 
depending on the location of intersecting point. In 
this section, we define the Grasp Stability Index 

(GSI) in the dual space for quantitative 
expression of grasp stability. 

 
Fact 2: Division ratio of line segments which 

transform friction cones of a base point and 
homologous points is an important factor for grasp 
stability. 
 

In the robot work space of Fig. 2, a 
homologous point C is the most stable case to 
grasp the object. In the same manner, in the dual 
space of Fig. 3 which transforms the robot work 
space, line segment R' is bisected by line segment 
C'. Also, homologous points B and D are the 
boundary cases to grasp the object, and when we 
transform the points in the robot work space into 
a line segment in the dual space, line segments B' 
and D' are in a contact with each end of the line 
segment R'.  

The friction cones of homologous points that 
can grasp the object between point B and point D 
are transformed into line segments between B' 
and D'. If the homologous point is shifted from 
point C, which has the most stable grasp, to the 
point B or point D, the hand of the robot grasps 
the object become unstable gradually. At this time, 
in the dual space the intersection point between 
line segment R' and the transformed line 
segments of a homologous point gradually shifts 
from bisected point to end point. Therefore, when 
the line segment for a base point is bisected, 
grasp stability is at its maximum. When each end 
of the line segment is contacted, grasp stability is 
at its minimum. 

When we translate the object along the y-axis, 
the ratio of length for a base point is kept as 
shown in (3), but the ratio of length for 
homologous points is changed. In order to keep 
ratio of length, we propose as follows. 

 
Proposition 1: The line segments for homologous 

points can be converted into the standardized line 
segment which is projected on the line segment for a 
base point. 
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Fig. 5. Transforming Line Segment ⓟ' into 

Standardized Line Segment αδ . 
 
Figure 5(b) represents the method which standardize 

line segment ⓟ' for defining the Grasp Stability 

Index. We projects line segment ⓟ' on line segment 

R'. When we transform points A and B which is 

on a tangent line of point ⓟ into line segments A' 

and B' in the dual space, the trace equations which 

connect both end points of line segments A', ⓟ' and 

B' is represented by the form of straight lines. From 
crossing these straight lines and the extension line of 
line segment R', we can get crossing points α  
andδ . From this, line segment αδ  is a standardized 
line segment for homologous points. 

The angle θ  of friction cone at a base point in the 
robot work space relates to value of length of the a-
axis in the dual space, as follows. 

 
θtan 0 =a      (for b=1)      (4) 

 
The greater the angle value of the friction cone 

becomes, the longer the length of the line segment for 
a base point enlarges. Therefore, we propose defining 
the Grasp Stability Index (GSI). 

 
Proposition 2: Grasp Stability Index (GSI) 
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Figure 6 is enlarged section of δα ~ to calculate the 
GSI. We transform line segments for homologous 
points into standardized line segment L2. 

 

 
Fig. 6. Representation of Line Segments in the Dual 

Space. 
 

We get the following form of the Grasp Stability 
Index (GSI) according to proposition 2. 
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The definition of line segments is described in the 

following form. 
βγ=1L  (Length of the line segment for a base point)  
αδ=2L  (Length of the standardized line segment for 

homologous points)  
βγ=0L  (Overlapped length of  and )  1L 2L
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0b : Value of b-axis of line segment R' in the dual space 

 (In case of Fig. 5(b), = 0.2) 0b
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5  Simulation 
In this section, we calculate the Grasp Stability 
Index (GSI) about a simple example, and 
determine the Optimal Grasp Point (OGP) from 
the viewpoint of grasp stability.  

 
Fig. 7. Grasping a Quadrangular Object 

 
Figure 8 is the result of calculating the GSI about 
a quadrangular object of Fig. 7. The horizontal 
axis is counterclockwise distance along the 
contour of the quadrangular object. The total 
distance is 19.33. When the angle of the friction 
cone has 30  at a base point and homologous 
points, the distance of the maximum GSI point, 
which is the Optimal Grasp Point (OGP), is 7.62 
from a base point and the value of the GSI is 
0.1354. 
When the angle of the friction cone has , it is 
possible to grasp the object at three sections. The 
Optimal Grasp Point (OGP) is a distance of 6.54 
from the base point, and the value of the GSI is 
0.3808. The GSI is discontinuous at the 6.00 and 
11.35 due to the discontinuity of the object 
curvature.  
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Fig. 8. GSI about the quadrangular object 

 
6  Conclusion 
We have presented throughout this paper a new 
method to calculate grasp stability by using the 
dual space. This method can judge the possibility 
of grasping by transforming friction cones in the 
robot work space into line segments in the dual 
space, and it needs only a friction coefficient and 
form information of an object without 
relationship to the magnitude of force which the 
robot fingers inflicts on an object. 

Also, it can calculate the Grasp Stability Index 
(GSI) at every grasp point by considering the 
intersection condition between line segments in 
the dual space. As a result, we can confirm 
effectiveness and propriety of the GSI. 
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