
Evolution of Uncorrelated and Correlated Noise
in Gaussian and Laplacian Image Pyramids

MARC HENSEL
ROLF-RAINER GRIGAT

Hamburg University of Technology
Institute for Vision Systems
Harburger Schloßstraße 20

21079 Hamburg, GERMANY
{marc.hensel,grigat}@tu-harburg.de
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Röntgenstraße 24-26

22335 Hamburg, GERMANY
thomas.pralow@philips.com

Abstract: Gaussian and Laplacian pyramids are the basis of established image processing applications, for in-
stance, contrast enhancement and noise reduction in medical X-ray imaging. For these techniques to yield optimal
results, the noise level at each pyramid scale must be known. So far, however, there is almost no published re-
search regarding this important topic. In this paper, we analyze, to our best knowledge for the first time, noise in
pyramids in the spatial domain and show that—and how—noise in Laplacian pyramids depends on the location
of a given coefficient. For uncorrelated Gaussian noise we derive mathematical formulations of Gaussian and
Laplacian equivalent weighting functions. Correlated noise is addressed by the effect of pyramid operations on
autocorrelation functions. The results allow for significant improvement ofdiverse established methods.
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1 Introduction
Although originally introduced for image compres-
sion [3], nowadays Laplacian pyramids are estab-
lished for a large variety of applications including
image transmission, mosaicing, texture analysis, and
segmentation. Moreover, pyramids have gained par-
ticular importance in medical image processing, for
instance, in X-ray image enhancement [4, 11, 12] and
noise reduction [8, 9].

For enhancement and noise reduction, an image
is decomposed into a Laplacian pyramid, which con-
tains band-pass filtered versions of the original image.
The methods operate on Laplacian scales rather than
the image and the processed image is reconstructed
from the processed pyramid. In order to be optimal,
enhancement and noise reduction must be adaptive to
the noise level in observed images. This is especially
true for medical X-ray imaging, which is character-
ized by severe noise. As the methods operate on pyra-
mid levels, however, noisein pyramidsinstead of the
observed images is required. Unfortunately, and in
spite of its importance, to the best knowledge of the
authors there is hardly any research published regard-
ing this topic.

This paper is organized as follows: In Chap-
ter 2 we give a short overview of pyramids and mul-
tiscale noise evolution. Chapter 3 addresses uncor-
related noise in pyramids by mathematical derivation

of Gaussian and Laplacian equivalent weighting func-
tions. In Chapter 4 correlated noise in pyramids is
analyzed by means of autocorrelation functions. The
paper concludes with a short summary in Chapter 5.

2 State-of-the-Art
As background for the presented work, we give a short
introduction to pyramids and related methods to esti-
mate noise in multiscale representations.

2.1 Gaussian and Laplacian Pyramids
Let g denote an observed gray-valued image with in-
tensitiesg[m, n] ⊂ N0 defined at discrete locations
[m, n] ∈ Ω = [0, M − 1] × [0, N − 1] ⊂ N

M×N
0

. An
associatedGaussian pyramidG with levels (scales)
Gk, k ∈ [0, K] ⊂ N0, is a set of different reso-
lutions of g. Starting withG0 = g, the levelsGk,
1 ≤ k ≤ K, are created by successive downsampling.
In order to reduce aliasing, low-pass filtering is ap-
plied prior to decimation. Commonly, both operations
are combined in theReduceoperation

Reduce(Gk) = (↓ 2) (ha ∗ Gk) (1)

with linear low-pass filterha and downsampling

(↓ 2) (x)[n] = x[2n] , (2)

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007      71



G0
...Reduce Reduce Reduce

G1 G2 GK−1

L0 L1 L2 LK−1 LK

Expand

Expand

Expand

...

...

–

–

–

–

GK = LK

G0
...Expand Expand Expand

G1 G2 GK−1

Figure 1: Pyramid creation and reconstruction. A Laplacian pyramidL (middle) is created from the corresponding
Gaussian pyramidG (top). Perfect reconstruction yields the original imageG0 (bottom).

which discards every data element with odd index. In
2D data, downsampling is applied in each dimension.
With this, the Gaussian pyramid is given by:

Gk =

{

g : k = 0

Reduce(Gk−1) : 1 ≤ k ≤ K
(3)

Neglecting aliasing, a Gaussian pyramid is a low-pass
pyramid andGk contains the lower1/2dk part of the
frequency range of the observedd-dimensional data.

The correspondingLaplacian pyramidL with
levelsLk contains roughly the frequency components
of eachGk lost in the creation of the next higher level
Gk+1, i.e., the differences betweenGk and Gk+1.
Hence, Laplacian pyramids are band-pass pyramids.
DifferencesGk − Gk+1 cannot be calculated directly
asGk+1 contains less samples thanGk. For this rea-
son, the number of samples inGk+1 is increased to
matchGk and missing samples are interpolated. Both
operations are combined in theExpandoperation

Expand(Gk) = 2dhi ∗ [(↑ 2)Gk] (4)

with data dimensiond, linear interpolation filterhi,
and(↑ 2) denoting upsampling:

(↑ 2) (x)[n] =

{

x
[

n
2

]

: n even

0 : n odd
(5)

Upsampling inserts a zero in-between adjacent data
elements. In order to keep the mean image intensity,
the result must be multiplied by2d. With this, the
Laplacian pyramid is defined as follows:

Lk =

{

Gk − Expand(Gk+1) : 0 ≤ k ≤ K − 1

Gk : k = K
(6)

Figure 1 depicts Gaussian and Laplacian pyramid
creation and reconstruction. Finally, note that a Lapla-
cian pyramid is a complete representation ofg as the
corresponding Gaussian pyramid, and hence the orig-
inal imageg = G0, can be reconstructed fromL:

Gk
(6)
=

{

Lk : k = K

Lk + Expand(Gk+1) : 0 ≤ k ≤ K − 1
(7)

Regardless of the filtersha andhi this reconstruction
is perfect, i.e., aliasing effects cancel each other out as
long as no pyramid levelLk has been modified.

2.2 Multiscale Noise Evolution
In [1], Aach and Kunz derive the noise power spec-
trum in Laplacian scalesLk in the frequency domain.
They note that the result is depending on the pixel
grid, i.e., whether sample indices are even or odd, and
estimate the noise power spectrum by the average of
the grid-dependent spectra.

Further related work estimates noise in wavelet
scales rather than pyramid levels. Donoho and John-
stone [5] use the median absolute deviation (MAD)
at the finest scale. The method is inaccurate in the
presence of structure, though [2]. Yuan and Buck-
les [14] note that noise decreases with scale and as-
sume noise to dominate at fine scales. They fit a
scale-dependent exponential model to noise estimated
at low levels. Xuet al. [13] evaluate coefficients rep-
resenting signal-free areas—which, naturally, requires
such areas to exist. Finally, Ge and Mirchandani [6]
estimate the noise level in a wavelet scale from the
adjacent scale making use ofσ2(h ∗ η) = ‖h‖2σ2(η)
for linear filtersh and i.i.d. Gaussian noiseη. The
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prerequisite of independent noise, however, is lost in
filtering and, hence, fulfilledat mostfor the lowest
scale. In the following, we chose a similar approach,
though, without violating above prerequisite.

3 Uncorrelated Noise
We base our analysis on the additive noise model
with zero-mean Gaussian noiseη—which is valid for
a large variety of applications, for instance, medi-
cal X-ray imaging [8]. That is, the intensity at lo-
cation [m, n] in an observed imageg is given by
g[m, n] = s[m, n] + η[m, n] with uncorrupted sig-
nal s and zero-mean Gaussian noiseη. However, as
pyramids are linear, we can neglects and restrict the
analysis tog = η whereg can take positive and neg-
ative values. In the following we assume the noise
varianceσ2 = E

[

(η − E[η])2
]

to be knowna priori,
for instance, by using an appropriate noise estimator.
Moreover, in this chapter we assume noise to be un-
correlated, i.e.,g is a 2-dimensional random fieldX of
independent zero-mean normally-distributed random
variablesX[m, n] with [m, n] ∈ Ω.

3.1 Gaussian Pyramid
We address noise in Gaussian pyramid levelsGk by
a concept known asequivalent weighting functions
(EWF) introduced by Burt and Adelson [3]. The un-
derlying idea is that, due to properties of Reduce and
Expand operations (1) and (4), a coefficientGk[m, n]
is, in essence, a weighted sum

Gk[m, n] =
∑

i

∑

j

cij G0[i, j] (8)

of samples of the original imageG0.
If all constantscij ∈ R

+

0
were known, we could

compute noise variance inGk directly from the known
variance inG0. To do so, we make use of the weighted
sum of Gaussian random variablesXi, for which the
variance is given by:

var

(

N−1
∑

i=0

ciXi

)

=

N−1
∑

i=0

c2
i var(Xi) + 2

N−1
∑

i=0

N−1
∑

j=i+1

cicj cov(Xi, Xj)

(9)
Under the assumptions of independent noise, i.e.,
cov(Xi, Xj) = 0 for i 6= j, and identical noise char-
acteristics var(Xi) = σ2

0, Equation (9) simplifies to

var

(

N−1
∑

i=0

ciXi

)

=

(

N−1
∑

i=0

c2
i

)

σ2
0 = ‖c‖2σ2

0 (10)

with the vector of weightsc = [c0, c1, ..., cN−1]
T .

Unfortunately, Burt and Adelson merely intro-
duced the concept of EWFs but did not supply mathe-
matical formulations required to evaluate (10). In the
following we provide the results of our mathemati-
cal derivations. The proofs are omitted due to limited
space. They will be handed in later in [7]. However,
the lemmas and theorems can be verified, for instance,
by drawings and numerical simulations.

To simplify expressions we define a convolution
operator similar to sums

∑

and products
∏

and de-
note linear convolutions of expressionsfi by:

i1

Λ
i=i0

fi = fi0 ∗ fi0+1 ∗ · · · ∗ fi1 (11)

In repeated Reduce operations linear convolution
of downsampled data takes place. This is equivalent
to downsampling of the original data convolved with
an upsampled filter:

Lemma 1 Let h denote a discrete filter kernel andx
discrete signal. Then
(

h ∗ (↓ 2)k x
)

[n] =
(

(↓ 2)k
(

(↑ 2)k h ∗ x
))

[n]

(12)
holds fork ∈ N.

A compact formulation of EWFs follows from
Lemma 1 by a proof by induction:

Theorem 2 Let Gk, k ∈ [0, K], be levels of a 1-
dimensional Gaussian pyramidG and ha denote the
smoothing filter used for pyramid creation. LevelGk

can be calculated fromG0 by

Gk[n] =
(

(↓ 2)k (wGk
∗ G0)

)

[n] , (13)

where the equivalent weighting functionwGk
for co-

efficientGk[n] is given by

wGk
[n] =











δ[n] : k = 0
(

k−1

Λ
i=0

(↑ 2)i ha

)

[n] : k ≥ 1
(14)

with unit impulseδ[n].

Figure 2(a) depicts the typical Gaussian-like shape of
EWFs for binomial filtersha. Finally, we provide
functions for 2-dimensional signal:

Theorem 3 Equivalent weighting functions accord-
ing to Theorem 2 hold for 2-dimensional signal
G0[m], m = [m, n] ∈ Ω, and yield the dependency

Gk[m] =
(

(↓ 2)k (WGk
∗ G0)

)

[m] (15)

with a separable weighting matrixWGk
= wGk

wT
Gk

.
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Figure 2: Equivalent weighting functions (5-tap binomial filters,k = 3). (a) Gaussian levelG3. (b) Laplacian level
L3 at even coefficients. (c) Laplacian levelL3 at odd coefficients.

Theorem 3 expresses, in essence, coefficients in
Gk as weighted sums of pixelsG0. The latter ful-
fill the assumption of independent Gaussian noise.
Hence, according to (10) noise inGk is given by

σ2
Gk

=
∥

∥wGk
wT

Gk

∥

∥

2
σ2

G0
. (16)

Our numerical simulations verified (16) and
showed that for pyramids created, for instance, by
5 × 5 binomial filters the approach by Ge and Mir-
chandani [6] yields relative errors of about 40% and
66% forG2 andG3, respectively.

3.2 Laplacian Pyramid
In principle, the concept of EWFs also holds for
Laplacian pyramids. However, the derivation of a
mappingLk = f(G0) yields expressions of structure

(↑ 2) ((↓ 2)x[n]) =

{

x[n] : n even

0 : n odd
, (17)

i.e., coefficients at even and odd positions in the grid
must be distinguished.

Because of limited space and as the approach is
similar to the Gaussian case, we merely state the re-
sults of our analysis—beginning with 1D signal:

Theorem 4 Let Lk, k ∈ [0, K], be levels of a 1-
dimensional Laplacian pyramidL and h denote the
interpolation filter used for pyramid creation. Level
Lk can be calculated fromG0 by

Lk[n] =
(

(↓ 2)k (wLk
∗ G0)

)

[n] , (18)

where the equivalent weighting functionwLk
for coef-

ficientLk[n] is given by

wLk
[n] =

(

wGk
−
(

(↑ 2)k+1 (2hdown) ∗ wGk+1

))

[n]

(19)

with hdown consisting of even or odd coefficients ofh,
only, for even or oddn, respectively.

Again, the 2D EWFs are based on 1D EWFs, however,
four non-separable weighting matrices depending on
the location[m, n] result:

Theorem 5 Equivalent weighting functions accord-
ing to Theorem 4 hold for 2-dimensional signal
G0[m], m = [m, n] ∈ Ω, and yield the dependency

Lk[m] =
(

(↓ 2)k (WLk
∗ G0)

)

[m] (20)

with non-separable weighting matrices

WLk
[m] =

(

WGk
−
(

(↑ 2)k+1 hm ∗ WGk+1

))

[m]

(21)
and separable 2D filter kernels

hm = ((↑ 2) hdown,m) · ((↑ 2) hdown,n)T (22)

depending on the four combinations of even and odd
indicesm andn.

Like in the Gaussian case, noise inLk can be cal-
culated by applying (10) to the EWFs. However, ac-
cording to Theorems 4 and 5wLk

differs for odd and
even indices.

Figures 2(b) and (c) depict typical shapes of
Laplacian EWFs for binomial filters. Finally, Table 1
quantifies noise in pyramid levelsLk, 0 ≤ k ≤ 3,
created by3 × 3 and5 × 5 binomial filters. While
noise levels generally depend on the combination of
even and odd coefficients, these are very similar for
filter sizes≥ 5. Hence, for practical purposes, the
mean noise level of all even and odd combinations of
indicesm andn is a sufficiently good approximation.

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007      74



(a) h3×3

k σLk
[me, ne] σLk

[mo, no] σLk
[mo/e, ne/o]

0 80.04 96.07 91.22
1 27.29 34.71 32.26
2 11.98 15.64 14.40
3 5.78 7.60 6.98

(b) h5×5

k σLk
[me, ne] σLk

[mo, no] σLk
[mo/e, ne/o]

0 93.01 95.48 94.37
1 22.40 23.57 23.03
2 9.74 10.31 10.04
3 4.72 5.00 4.87

Table 1: Uncorrelated noise in Laplacian pyramid levels created with3×3 and5×5 binomial filters (σG0
= 100).

Noise levels differ for combinations of even (me, ne) and odd (mo, no) grid locations[m, n].

4 Correlated Noise
In a practical application, noise need not be uncor-
related inG0—for instance, in medical X-ray imag-
ing: While noise in a X-ray beam is uncorrelated, it is
correlated in observed images. This is due to the de-
tectors, where X-ray photons typically evoke multiple
light photons that can contribute to different pixels.

In the following we address correlated noise in
pyramids by the effect of Reduce and Expand opera-
tions on the autocorrelation function ofG0.

4.1 Gaussian Pyramid
For a real-valued discrete wide-sense stationary ran-
dom processX, the autocorrelation functionRXX is
defined as

RXX [∆n] =
∑

n

X[n] X[n + ∆n] . (23)

ExpressingRXX in terms of expected values,

RXX [∆n] = E
[

X[n] X[ñ]
]

− E
[

X[n]
]

E
[

X[ñ]
]

,
(24)

with ñ = n + ∆n, reveals that at the originRXX

equals the variance ofX:

RXX [0] = E
[

X[n]2
]

− E
[

X[n]
]2

= σ2
X (25)

In other words, providedRGkGk
is known at pyramid

scaleGk, the noise level at this scale is determined
by RGkGk

[0]. Assume thatRG0G0
of an imaging sys-

tem is given, for instance, by evaluation of images ac-
quired of a homogeneous scene. We obtainRG1G1

at the next scaleG1 by analysis of the influence of
the Reduce operation (1)—linear filtering followed by
downsampling—onRG0G0

. To do so, recall that the
autocorrelation functionRyy of a linearly filtered sig-
naly = h ∗ x holds [10]

Ryy[∆n] = h[n] ∗ h[−n] ∗ Rxx[∆n] . (26)

For symmetric filtersh[n] = h[−n] this expression
becomesRyy[∆n] = h ∗ h ∗ Rxx[∆n]. Further, it

shows that the autocorrelation function of a downsam-
pled signal is the downsampled autocorrelation func-
tion of the original signal [10]. Hence,RGk+1Gk+1

,
and thusσ2

k+1
= RGk+1Gk+1

[0], is determined by
RGkGk

and the filterha used in reduction:

RGk+1Gk+1
[∆n] = ((↓ 2) (ha ∗ ha ∗ RGkGk

)) [∆n]
(27)

Figure 3 depictsRG0G0
andRL0L0

for a roughly
homogeneous region of a non-clinical X-ray image.
Noise is slightly correlated asRG0G0

does not resem-
ble a unit impulseδ[0, 0] at the origin as would be the
case for uncorrelated noise.

4.2 Laplacian Pyramid
In principle, the evolution of correlated noise inG0 to
Laplacian scalesLk is determined by the same means,
i.e., filtered and resampled autocorrelation functions,
as in the Gaussian case. A particularity is the usage of
different filters in Expand operations (4) at even and
odd sample indices according to Theorems 4 and 5.

5 Summary and Conclusion
In the more than two decades since their introduction
Gaussian and Laplacian pyramids have become estab-
lished in a large variety of important image process-
ing applications. Today, they are, inter alia, of out-
standing relevance for medical image processing. As-
toundingly, however, no means to estimate noise lev-
els in the spatial domain have evolved—although this
knowledge can considerably improve, for instance,
enhancement and noise reduction by allowing meth-
ods to be adaptive to observed noise levels.

In this paper, we provided mathematical formula-
tions for noise levels at arbitrary coefficients in Gaus-
sian and Laplacian pyramids. Inter alia, the analysis
of uncorrelated Gaussian noise yielded important in-
sight into the spatial dependency of noise in Lapla-
cian pyramids. This knowledge combined with evo-
lution of noise autocorrelation functions in pyramids
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(a) RG0G0
(b) RL0L0

Figure 3: Autocorrelation functions of a homogeneous non-clinical X-ray image. Noise is slightly correlated as
RG0G0

is somewhat “smeared”. (200 × 200 regions,σ2
0 normalized to 100)

allows for scale-dependent—and in case of Laplacian
pyramids also spatially dependent—noise estimation
in the more general case of correlated noise.

A related state-of-the-art multiscale approach
yielded relative errors of about 40% to 66% for un-
correlated noise in practically relevant Gaussian lev-
els and is not applicable for Laplacian pyramids. In
contrast, we provide exact solutions for both types of
pyramids as well as correlated noise. We expect these
results to contribute to a considerable improvement of
pyramid-based image processing methods.
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