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Abstract: Many established and emerging image processing applications rely on quantum-limited imaging, i.e.,
imaging in extremely poor illumination. At this, images are corrupted by severe signal-dependent Poisson noise.
For optimal noise reduction the noise characteristics must be estimated and integrated into the method. Common
noise estimators, however, assume Gaussian noise which is not signal-dependent. In this paper, we describe the
modeling process exemplarily for low-dose medical X-ray imaging. In this context, we formulate functional mod-
els for detector images and images which have undergone nonlinear white compression prior to further processing.
Furthermore, we present a robust estimator for signal-dependent noise suited for real-time applications.
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1 Introduction
There is a broad variety of applications relying on
poor lighting conditions, for instance, night vision for
driver assistance and low-dose medical X-ray image
sequences, also known as fluoroscopy. In the lat-
ter, X-ray image sequences are processed and visu-
alized in real-time to guide medical interventions. A
prominent example is coronary angiography, where
narrowed heart arteries can be detected by insertion
and observation of contrast agents and treated in min-
imally invasive procedures. Typically, a large number
of single X-ray images is taken. Hence, very small
radiation doses are applied for each image in order to
minimize the overall exposure of patients and medical
staff—resulting in only a very small number of pho-
tons available for image formation.

This so-called quantum-limited imaging is char-
acterized bysevereand signal-dependentPoisson
noise. For effective noise reduction, the noise level
as function of the signal must be known. However,
noise estimators are typically designed for Gaussian
noise and do not deal with noise signal-dependency.

This paper is organized as follows: Chapter 2
introduces to image acquisition in X-ray imaging.
Chapter 3 describes the noise modeling and verifies
its validity for X-ray images. In Chapter 4 we develop
a fast noise estimator dealing, inter alia, with signal-
dependent noise and the influence of image structure
on the estimate. The paper concludes with a short
summary in Chapter 5.

2 Image Acquisition
X-ray imaging is based on transmission of illumina-
tion through objects rather than reflectivity. In an ex-
posure time interval∆tE , a X-ray tube radiates a pos-
itive numbernt ∈ N, 0 < nt[m, n] < ∞, of pho-
tons toward a detector pixel at image location[m, n].
When passing through an object, the intensityI of the
X-ray beam is attenuated according to

I = I0 exp



−
x1
∫

x0

µ(x)dx



 (1)

with initial intensity I0, material-specific attenuation
µ, andx ∈ [x0,x1] denoting the path of the photons.

In a digital detector, the detected number of pho-
tonsnd is mapped to an image intensity. Naturally,
the result depends on the mapping as well as the de-
tector’s sensitivity to quanta at given energy levels. In
practice, we model the resultingraw imagegraw as
being linearly dependent on the number of photons,
i.e., with constant detector gaincg ∈ R

+ and offset
co ∈ R

+
0 incoming radiation is mapped to

graw = cg nd + co . (2)

Naturally, raw images are mapped in such way that the
gray valuesgraw are within a given dynamic range, for
instance, in[0, 2b − 1] ⊂ N0 for b-bit images. Con-
sequently, as doubling the exposure time∆tE about
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doubles the numbernd of detected photons,cg is in-
versely proportional to∆tE , i.e.,cg ∝ 1/∆tE .

Typically, intensities in an observed image should
be proportional to the thickness of radiated objects. To
compensate exponential photon attenuation (1) a loga-
rithmic mapping (white compression) is applied to raw
images prior to image enhancement and visualization.
For this, the device-dependent detector offset is com-
pensated (co = 0) and the resulting imageglin = cg nd

is mapped to the gray-valued image according to:

glog = clog ln (glin + 1) (3)

Incrementingglin avoids the undefined expression
ln(0), but has no significant influence on the vast ma-
jority of image pixels asln (glin + 1) ≈ ln (glin) holds
for glin ≫ 1.

3 Noise Model
Noise in low-dose X-ray images origins from various
noise sources. To begin with, X-ray beams sensed
at a detector are subject to quantum fluctuations—
so-calledquantumor Poisson noise—since radiation
emission and attenuation are random processes. This
means, even in a static setup the number of photons
reaching a detector element in the exposure time∆tE
varies. Further noise sources include, for instance,
scattered radiation and system noise. The latter in-
tegrates noise originating from the hardware, for ex-
ample, thermal, shot, and quantization noise. How-
ever, in spite of other noise sources, quantum noise is
by far the dominant noise in low-dose X-ray imaging
[2, 8, 10, 14] and other sources can be neglected [1].
In the literature, figures on the X-ray quanta count per
pixel differ and are quantified, for instance, as 10 to
200 [2], 20 to 500 [1], and about 35 on average [4].

3.1 State-of-the-Art
Signal degraded by quantum noise, and hence noise in
low-dose X-ray imaging, is commonly modeled by a
Poisson distribution [1, 4, 8, 10, 14]. Although Pois-
son noise does not fit the general concepts of additive
and multiplicative noise models well [5], typically,
the equivalent additive noise model with zero-mean
signal-dependent noise is used. Hence, an observed
gray-valued imageg with intensitiesg[m, n] at dis-
crete locations[m, n] ∈ Ω = [0, M−1]×[0, N−1] ⊂
N

M×N
0 is given by

g = s + η
(

s
)

(4)

with local meanµ(g[m, n]) = s[m, n] and variance
σ2(g[m, n]) = σ2(η(s[m, n])) being determined by
the signals and noiseη, only, respectively.

Aachet al. [1] note that while a X-ray beam fol-
lows Poisson statistics, noise in observed images has
been filtered by the imaging system’s transfer function
and commonly undergone a nonlinear mapping (white
compression).

3.2 Poisson Noise
In the following, we formulate the Poisson noise
model for X-ray images and link the model parame-
ter to physical quantities and detector constants of the
image acquisition process. For this, we assume the
detected numbernd of X-ray quanta to follow a Pois-
son distribution. Hence, the probability ofnd detected
photons in an exposure time interval∆tE is

Pλ(X = nd) =
λnd

nd!
e−λ (5)

with λ denoting the noise-free photon count, that is,
λ = E[nd] = µ(nd) = s/cg with uncorrupted inten-
sity s and a detector mapping according to (2) with
co = 0. Because of the Poisson statistics

λ = µ = σ2 (6)

the quantum noise variance isσ2(nd) = s/cg.
While (5) models the photon count, observed gray

valuesg result fromnd by scaling (2). By this, the
model transforms to hold (see, e.g., [4, 8])

g ∼ Pλ(X = g) ∼ cg Pλ(X = nd) . (7)

Hence, meanµ(g) = cg µ(nd) = s and variance
σ2(g) = c2

g σ2(nd) = cg s ∝ s/∆tE of an observed
imageg = s + η(s) are linear in the signals. These
statistical properties have several implications on fluo-
roscopic images: Noise is signal-dependent with noise
standard deviation

ση = σ(g) =
√

cg s ∝
√

s

∆tE
(8)

increasing with dose, but decreasing with exposure
time∆tE . Moreover, contrast and the signal-to-noise-
ratio (SNR) increase with brightness and exposure
time when defined asc = µ2/σ2 = s/cg ∝ ∆tE s

and SNR= µ/σ =
√

s/cg ∝
√

∆tE s, respectively.

3.3 Gaussian Approximation
Above Poisson model is rather impractical for noise
reduction methods. For this reason, we model noise in
low-dose X-ray images by zero-mean Gaussian noise
with signal-dependent variance. In the following, this
is justified by quantitative verification that (i) under
weak conditions a Poisson distribution can be ap-
proximated by a sampled Gaussian distribution and
(ii) noise in low-dose X-ray images follows a Gaus-
sian distribution for constant signals = s0.
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Figure 1: Approximating a Poisson distribution
(markers) by the sampled Gaussian distribution (solid
line) of same mean and varianceλ = 5. The approxi-
mation improves considerably for increasingλ.

3.3.1 Approximating Poisson by Gaussian Distri-
butions

For largeλ ≫ 1 the Poisson distribution

Pλ(X = k) =
λk

k!
e−λ (9)

of a discrete random variableX can be approximated
by the sampled probability density function of a Gaus-
sian distribution

P (X = x; µ, σ2) =
1√
2π σ

e−
(x−µ)2

2σ2 (10)

with same mean and varianceµ = σ2 = λ:

Pλ(X = k) ≈ 1√
2πλ

e−
(k−λ)2

2λ (11)

Figure 1 depicts both distributions forλ = 5.
The approximation improves with increasingλ. For
a quantitative estimation, the approximation error is
analyzed theoretically and numerically.

Theoretic Analysis A theoretical analysis yields the
approximation to hold

Pλ(X = k) =
1√
2πλ

e−
(k−λ)2

2λ · O
(

e1/
√

λ
)

(12)

for largeλ ≫ 10. The detailed derivation is omitted
due to limited space, but the idea is sketched as fol-
lows: At first, we apply the logarithmln(·) and Stir-
ling’s formula [7] for large numbers (k ≫ 10),

ln(k!) ≈
(

k +
1

2

)

ln(k) − k + ln
(√

2π
)

, (13)

to (9). Substitution of observed valuesk by the com-
ponents of the additive noise model, i.e.,k = λ + η,
yields an expression inln(1 + η/λ) which is approxi-
mated forη/λ ≪ 1 by the Taylor series

ln
(

1 +
η

λ

)

=
η

λ
− 1

2

(η

λ

)2
+ O

(

λ− 3
2

)

. (14)

Finally, substitutionη = k − λ and exponential map-
ping results in (12).

Numeric Analysis For numeric analysis, the Pois-
son distribution (9) and its Gaussian approximation
(11) as well as the corresponding cumulative proba-
bilities have been compared for discreteλ ∈ N.

Figure 2(a) depicts the maximum approximation
errors. The maximum relative approximation error

ǫrel[λ] =
max
k∈N

∣

∣Pλ(X = k) − P (X = k; λ, λ)
∣

∣

λ
(15)

is about 5.8% atλ = 1. It drops rapidly with increas-
ing expected meanλ and is below 0.1% forλ ≥ 10.
Likewise, the maximum absolute approximation error
ǫabs[λ] = λ ǫrel[λ] decreases withλ.

Apart from maximum pointwise differences be-
tween both probability distributions, we also evalu-
ated the cumulative approximation error. We base our
evaluation on the idea of the Kolmogorov-Smirnov
(K-S) test, described, for instance, in [16], and quan-
tify the error by differences between the cumula-
tive probability functionsPλ(X ≤ x) andP (X ≤
x, µ, σ2). While these are identical for minimum and
maximumx, asP (X ≤ −∞) = 0 andP (X ≤ ∞) =
1 holds for any distributionP , we measure quality
D in terms of the maximum absolute difference in-
between:

D[λ] = max
k≥0

∣

∣

∣

∣

∣

∣

k
∑

i=0

λi

i!
e−λ −

k
∑

i=0

e−
(i−λ)2

2λ

√
2πλ

∣

∣

∣

∣

∣

∣

(16)

Figure 2(b) depictsD[λ] according to (16). The
function is monotonically decreasing with the maxi-
mum errorD[1] = 0.13.

In summary, for aboutλ > 10 a Poisson distribu-
tion can be theoretically transformed into a sampled
Gaussian distribution with numeric evaluations yield-
ing maximum relative errors below 0.1% and maxi-
mum absolute cumulative errors below approximately
0.02. This shows that, at least forλ > 10, a Poisson
distributionPλ(X = k) is approximated well by the
sampled Gaussian distributionP (X = k; λ, λ).
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Figure 2: Approximating a Poisson distribution by the sampled Gaussian distribution of same mean and variance.
(a) Probability functions: Maximum absolute and relative errors. (b) Cumulative probability functions: Maximum
absolute differenceD[λ] according to (16) (k = 2500).

3.3.2 Characterizing Noise in X-Ray Images by
Gaussian Distributions

So far, modeling has been based on theoretical as-
pects. In the following it is verified that noise in ob-
served X-ray images actuallyis well-approximated by
a normal distribution. The test data consists of a non-
clinical radiograph containing a large homogeneous
area. Prior to evaluation the image has been prepro-
cessed and been subject to rowwise and columnwise
normalization in order to, for instance, remove pixel
errors and reduce the Heel effect—an intensity gradi-
ent caused by self-absorption in X-ray tubes. Prepro-
cessing does not question the validity of the model as
we seek to model noise in clinical radiographs where
the same preprocessing is applied.

For evaluation, sample mean and standard devi-
ation of a homogeneous area of1400 × 2200 pixel
have been computed to beµg = 308.5 andσg = 40.2
and the area’s histogramhg[k] has been compared nu-
merically to the corresponding Gaussian distribution
P (X = k; µg, σ

2
g). The maximum absolute error

MAE = max
k∈[k0,k1]

|hg[k] − P (X = k; µg, σg)| (17)

and the mean squared error

MSE =

max
k∈[k0,k1]

(

(hg[k] − P (X = k; µg, σg))
2
)

k1 − k0 + 1
(18)

have been assessed in the dynamic range, i.e., for
k ∈ [k0, k1] ⊂ N0 with hg[k0] 6= 0, hg[k1] 6= 0, and
hg[k] = 0 for k /∈ [k0, k1]. Both measures yield low

errors of MAE= 1.57 ·10−4 and MSE= 1.26 ·10−9,
respectively.

Moreover, a Kolmogorov-Smirnov test has been
applied. In the evaluation of a data set containing
N samples with the empiric cumulative probability
function PN (X ≤ x) against a given distribution
P (X ≤ x), the significance level of

D = max
−∞<x<∞

|PN (X ≤ x) − P (X ≤ x)| (19)

as disproof of the null hypothesis that the distributions
PN andP are identical is approximately [16]

Probability(D > observed) = QKS

(√
ND

)

(20)

with the monotonic function

QKS(α) = 2
∞

∑

j=1

(−1)j−1 exp
(

−2j2α2
)

. (21)

For the test, typical values ofN = 40 samples
and a significance level of 5% were chosen. The K-S
test verified the null hypothesis that the X-ray image
follows the distributionP (X = x; µg, σ

2
g). This is a

strong indicator that noise in observed X-ray images
can be assumed to be Gaussian-distributed.

3.4 White Compression
In Section 3.2, noise standard deviation in the Poisson
noise model has been derived to holdσ(g) =

√
cg s.

In the following we estimate the effect of the logarith-
mic mapping (3) on the signal-dependent noise level.
To simplify expressions, we assumeg ≫ 1, which
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justifies the approximationln(g + 1) ≈ ln(g). With s
andη denoting signal and noise in the linear detector
imageglin = s+η, the corresponding observed image
glog is given by:

glog = clog ln (s + η(s)) (22)

= clog

(

ln(s) + ln

(

1 +
η(s)

s

))

(23)

The signal-dependent noise level of the logarithmized
data isσlog = σ(glog). As ln(s) is constant, this is
equivalent to

σlog = clog · σ
(

ln

(

1 +
η(s)

s

))

. (24)

The statistical properties of the termη/s can be ex-
pressed when regardingµ(η) = 0, σ2(η) = cg s, and
λ = s/cg:

µ
(η

s

)

=
µ(η)

s
= 0 (25)

σ
(η

s

)

=

√

σ2(η)

s2
=

1√
λ

(26)

In other words,η/s is of orderλ−1/2 andη/s ≪ 1
holds for largeλ ≫ 1.

To evaluateσlog, the termln(1 + η/s) is approxi-
mated by the Taylor series

Tn(x) =
n

∑

k=1

(−1)k+1

k
· xk (27)

for f(x) = ln(1 + x) at locationx0 = 1. The series
is a good approximation for|x| ≪ 1 which is fulfilled
in our case. By using the linear Taylor approximation
T1(η/s) = η/s of ln(1 + η/s) the noise level (24) is
approximated by:

σlog = clog σ
(η

s

)

=
clog√

λ
= clog

√

cg

s
(28)

Finally, (3) is applied to signals along with observed
gray values. Consequently, noise should be a func-
tion of slog = clog ln(s + 1) ≈ clog ln(s), which is
equivalent tos = exp(slog/clog), rather thans:

σlog = clog
√

cg exp

(

− slog

2clog

)

(29)

In summary, white compression according to the
logarithmic mapping (3) transforms the noise charac-
teristics and the signal-dependent noiseσlog(slog) can
be modeled as monotonically decreasing exponential
function (29). Again, this model has been verified us-
ing non-clinical X-ray images.

4 Noise Estimation
Noise reduction as well as contrast enhancement
methods can be significantly improved by consider-
ation of the signal-dependent noise level. For this, the
quantitative dependency of the noise levelσ from the
signals must be know, i.e., we require an estimation
of the signal-dependent noise curveσ(s).

4.1 State-of-the-Art
Typically, noise estimation methods assume additive,
uncorrelated, stationary, zero-mean Gaussian white
noise—and assume it to be not signal-dependent.

In a comparison of various approaches, Olsen
[15] found that, on average,prefilteringgenerates the
most reliable estimate. In this approach an observed
imageg = s + η is filtered to reduce the influence
of structure. More precisely, filteringg yields an esti-
matese = filter(g) ≈ s of the signal and the differ-
enceηe = g − se between observed gray valueg and
estimated signalse is interpreted as noise component.
The estimated noise level is thus given byσηe using
the sample varianceσ2

ηe
= E[(ηe − E[ηe])

2].
Common prefilters are binomial and median fil-

ters. Binomial filtering modelss to be planar within
the filter window—which is not fulfilled at edges, re-
sulting in a tendency to overestimate noise [3]. For
this reason, commonly edge pixels are disregarded
based on the 1st or the 2nd derivation [9, 12]. Typ-
ically, only pixels with a gradient below a threshold,
‖∇g‖ < τ ∈ N, or only p percent of pixels with
lowest gradients contribute to the estimate [3, 15]. In
contrast, median filters allow the image model to con-
tain structure like step edges. All pixels contribute to
the estimate and no gradients are required. Ranket al.
[17] found the best window size of smoothing filters
to be, at large,3 × 3 pixel.

Other common approaches estimate noise in ho-
mogeneous image regions as these are likely not to
contain structure falsifying the result. For instance,
block-based methods typically average the smallest
standard deviations in image blocks [3]. Boscoet al.
[6] propose a fast method based on local pixelwise
differences. If all differences are below a threshold,
a homogeneous area is assumed and the noise level is
estimated from the noise histogram. Other histogram
approaches include, for instance, [17].

4.2 Approach
Most state-of-the-art noise estimation methods are not
valid for X-ray imaging as the assumption of signal-
independent noise is not fulfilled. Moreover, methods
must be fast to be applicable for real-time fluoroscopy.
While there are fast prefiltering and block-based noise
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Figure 3: Noise estimation by prefiltering

estimators, the latter is not well suited for medical X-
ray imaging. First of all, there is noa priori knowl-
edge if and where there are homogeneous blocks with
s ∈ [s0 − ds, s0 + ds] and smallds in an image.
Furthermore, blocks forall signal levels would be re-
quired to estimate the signal-dependent noise levels—
a requirement that will hardly be fulfilled in practice.

Hence, we chose a prefiltering approach depicted
in Figure 3. Following signal estimationse, the noise
component at location[m, n] is estimated to be

ηe[m, n] = g[m, n] − se[m, n] . (30)

The signal-dependent noise curveσηe(s) follows from
a statistical evaluations of all noise components at
identical estimated signal levelsse, i.e.,

σ2
ηe

(s) = E
[

(ηe(Ωs) − E[ηe(Ωs)])
2
]

(31)

=

∑

[m,n]∈Ωs

(ηe[m, n] − µηe(s))
2

|Ωs| − 1
(32)

with
Ωs = { [m, n] | se[m, n] = s } , (33)

spatial domainΩ =
⋃

s Ωs, |Ωs| denoting the number
of elements inΩs, and sample mean

µηe(s) =
1

|Ωs|
∑

[m,n]∈Ωs

ηe[m, n] . (34)

Finally, postprocessing increases the reliability of the
estimate and fits the data to the noise model.

A drawback of prefiltering is thatηe contains sig-
nal components ifse[m, n] 6= s[m, n]. For this rea-
son, the problem has to be addressed, how to filterg
in such way thatse resembless as closely as possible
or at least that the sample variance ofηe = g − se re-
sembles noise variance. In accordance with the state-
of-the-art,3× 3 binomial and median filters are taken
into account for signal estimation. Binomial filtersh
are well suited to attenuate Gaussian noise. Thus, one
can expectηe = g−h∗s to contain a great extent of the
noise. However, linear filtering cannot separate noise
and structure and thusηe will contain significant com-
ponents representing object structure. Median filters,

on the other hand, are not as suited to reduce Gaussian
noise, but exhibit better structure preservation. Thus,
one can expectηe to contain less Gaussian noise, but
also to contain less structure falsifying the result.

There are three main issues, to be discussed in the
following sections: How do the filters perform when
there is no structure present, i.e., in uniform signal
s[m, n] = s0 ∈ N0? How do the filters perform in
the presence of structure? And finally, how can falsi-
fications due to structure be reduced?

4.3 Prefilters for Uniform Signal
To begin with, we analyze noise estimation without
the influence of image structure. An observed im-
ageg[m, n] = s0 + η[m, n] is modeled to consist of
uniform signals0 ∈ N0 and uncorrelated zero-mean
Gaussian noiseη with standard deviationσ0 ∈ R

+.
Noise estimation performance is measured by the rel-
ative estimation error

ǫηe =
σηe − σ0

σ0
(35)

of the estimated noiseσηe with regard to the true noise
levelσ0 in the image. In uniform signal the estimated
noise is expected to be always slightly below the true
noise, i.e.,ǫηe < 0. This is due to signal estimation as
filtering does not yield constantse[m, n] = s0, thus,
some of the noise energy is estimated to be signal.

Noise estimation performance using binomial fil-
tering, i.e., linear filteringse = h ∗ g with filter mask
h, can be derived theoretically when assuming noise
statistics to be independent from the location[m, n]
and signals[m, n]. The variance of a weighted sum
X =

∑

i ciXi of independent Gaussian variablesXi

with variancesσ2
i is given by

σ2(X) =
∑

i

c2
i σ2

i . (36)

Hence, as linear filtering yields weighted sums of pix-
els g[m, n] with independent Gaussian noiseσ2

0, the
noise variance in the filtered image holds

σ2
se

=
∑

i,j

h[i, j]2 σ2
0 . (37)
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Filter Size σse/σ0 [%] σηe/σ0 [%] ǫηe [%]

Median (measured) 3 × 3 40.81 ± 0.05 97.13 ± 0.04 −2.87 ± 0.04
Binomial (derived) 3 × 3 37.50 80.04 −19.96

5 × 5 27.34 89.08 −10.92
7 × 7 22.56 92.50 −7.50

Table 1: Noise estimation performance in uniform signal. (a) Median filter: Average (accuracy, bias) and standard
deviation (precision, non-systematic error) of 100 measurements in test images containing1024 × 1024 pixel
(s0 = 0, σ0 = 100, no clipping). (b) Binomial filters: Derived according to (37) and (38).

Likewise, estimated noise componentsηe = g − se =
g − (h ∗ g) are weighted sums of pixelsg[m, n], how-
ever, differing in the central weight. Withδ[·] denot-
ing the Kronecker function, noise variance is given by

σ2
ηe

= ch σ2
0 (38)

with

ch =
∑

i,j

(1 − δ[i]δ[j])h[i, j]2 + (1−h[0, 0])2 (39)

and the relative error holdsǫηe = ch − 1. For median
filtering, we determined noise in estimated signalse

and noise componentsηe as well as the relative error
ǫηe by numerical simulations.

Table 1 summarizes the results. Although it has
been stated (e.g., [13]) that median filters are not
suited to reduce Gaussian noise, Boncelet [5] notes
that these perform only slightly worse in Gaussian
noise than linear averaging. This is supported by the
results in Table 1. Regarding3 × 3 filters, i.e., the
preferred filter size for noise estimation, about40.8%
and37.5% of the noise standard deviationσ0 remains
in se after filtering with median and binomial filters,
respectively. However, the statistical properties in
ηe = g − se reflect the noise levelσ0 by far better
in case of median filtering, yielding an absolute rela-
tive error|ǫηe | of about2.9% compared to20.0% for
binomial filtering.

4.4 Prefilters in the Presence of Structure
So far, we have analyzed noise estimation perfor-
mance in constant signals[m, n] = s0, for instance,
homogeneous areas. In natural images, though, signal
inhomogeneities like edges affect the estimate. A pre-
filter yields a signal estimate, which typically is not
identical to the signal, i.e.,se 6= s. Consequently, sig-
nal structure falsifies the estimated noise component
ηe = g − se 6= η and hence noise standard deviation
σηe calculated fromηe. As illustrated in Figure 4, the
additional componentsηe due to structure tend to have
negative sign for small signalse and positive sign for
large signal.

x

s, se

x1 x2

s

se = h ∗ s

se(x1) > s(x1) se(x2) < s(x2)

Figure 4: Predominant signs of falsifications due to
structure. A step edges is smoothed for signal esti-
mationse. At the lower (left) side of the edges, the
estimated signal isse > s. Thus, the estimated noise
ηe = s − se is negative. The opposite is true for the
larger (right) side of the edge.

4.4.1 Iterative Outlier Removal

As discussed above, state-of-the-art prefiltering meth-
ods typically address the problem (i) by disregarding
locations with intensity gradient‖∇g‖ above a thresh-
old τ ∈ N or (ii) by evaluatingp percent of pixels
with lowest entries in an edge image, only. We pro-
pose a third approach based on thea priori knowledge
that the noise componentsη[m, n] are expected to be
Gaussian-distributed, i.e., about99.7% of the samples
are in the3σ interval of the distribution. Thus, there
is a high probability that values outside this interval
are dominated by structure rather than noise. To re-
duce falsifications due to structure, we remove these
outliers from the sample set and update the estimated
standard deviation using the remaining samples. That
is, for each signal levels, starting from an initial sam-
ple setηe[m] at locationsm = [m, n] ∈ Ω

(0)
s ,

Ω(0)
s = { m | se[m] = s } , (40)

and noise estimate

σ(0)
ηe

(s) = E

[

(

ηe

(

Ω(0)
s

)

− E
[

ηe

(

Ω(0)
s

)])2
]1/2

(41)
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(b) Relative errorǫηe

Figure 5: Noise estimation performance at corrupted edges. The1024×1024 pixel test signal contains 2 pixel wide
vertical bars withs0 = 0 ands1 = 100. Zero-mean Gaussian noise with standard deviationsσ0 (in percentage of
step size∆s = s1 − s0) has been added and noise estimated using3× 3 median and binomial filters. (a) Absolute
errors. (b) Relative errors (σ0 ≥ 20 as relative errors are very large for smaller noise in binomial filtering).

according to (31) to (33), in each iteration step the
sample set is reduced to

Ω(k+1)
s =

{

m

∣

∣ ηe[m] ∈ Ω(k)
s ∧ |ηe[m]| ≤ 3σ(k)

ηe
(s)

}

(42)
and the standard deviationσ(k+1)

ηe (s) updated appro-
priately.

Our experiments show that this method is supe-
rior to state-of-the-art gradient-based approaches. A
general problem when integrating gradients or edge
detection (e.g., [9]) into noise estimation is that these
are very sensitive to noise. In particular in strong
noise, strongly corrupted pixels are omitted from the
estimation while edges might be comparatively weak
and hence contribute to the estimate.

4.4.2 Influence of Edges

We begin the analysis of the effect of structure on the
noise estimation by3 × 3 median and binomial pre-
filtering with some considerations on ideal step edges.
In the noise-free case,g = s, median filters preserve
edges,se = median3×3(s) = s, and hence these do
not falsify noise estimatesσηe . Binomial filtering, on
the other hand, blurs edges,se = h ∗ s 6= s, and falsi-
fiesσηe . In the presence of noise,g = s+η, median as
well as binomial filters affectσηe . In case of binomial
filters, signal componentss are blurred in estimated
signal due tose = h ∗ (s + η) = h ∗ s + h ∗ η. In me-
dian filtering, this results from the fact that the median
of all pixels in the filter window is chosen while the
median of pixels of the homogeneous area containing

the center pixel is desired. This introduces a slight
bias toward the “other” intensity level of the edge.

The influence of ideal step edges corrupted by
noise has been assessed in numerical simulations. The
test signal contains vertical bars with intensitiess0

ands1 > s0. Each bar is 2 pixels wide so that exactly
one edge is contained in a3 × 3 filter window at ev-
ery location. Figure 5 depicts the absolute and relative
noise estimation errorsσ0ǫηe andǫηe in dependency of
the true noise levelσ0. Note that the relative error is
not plotted forσ0 < 20 as relative errors can take ex-
cessively large values for smallσ0 [17]—which is the
case for binomial filtering in this simulation. In me-
dian filtering, noise is slightly overestimated (ǫηe > 0)
regardless ofσ0. In the case of binomial filtering
underestimation occurs for noise larger than approx-
imatelyσ0 ≈ 42% of the step height∆s = s1 − s0.

Olsen [15] notes that noise should be overesti-
mated in the presence of structure and underestima-
tion might occur when noise is driven into saturation.
This general tendency need not be true for very hight
noise levelsσ0 as prefiltering underestimates noise in
the absence of structure, for instance, by about 20%
for 3×3 binomial filtering (Table 1). This component
becomes dominant with increasingσ0.

4.4.3 Influence of Clinical Structure

We repeated above experiments with a clinical image.
For numerical simulations, we chose an image of size
1024 × 1024 pixel showing a vessel tree filled with
contrast agent as this contains clinical relevant struc-
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ture of varying sizes. In order to obtain an almost
noise-free clinical reference image, noise has been re-
duced by computational complex nonlinear diffusion
filtering.

For the evaluation, Gaussian noise with standard
deviationσ0 has been first added to and afterwards
estimated from the image. Apart from low noise lev-
els where—as explained above—the measure is not
meaningful, the relative estimation errorǫηe is roughly
constant throughout the analyzed noise levels. Forσ0

in 5% to 60% (step size: 2.5%) of the maximum im-
age intensity, median filtering yielded a mean relative
error of -2.85% with a standard deviation of 0.05%.
Binomial filtering resulted in−19.92%± 0.09%. The
magnitudes are hence within the errors of the noise-
free case according to Table 1.

5 Summary and Conclusion
To this day, literature on noise modeling and esti-
mation concentrates on signal-independent Gaussian
noise. In this paper, we have presented modeling
for signal-dependent quantum noise occurring in im-
portant and established applications as, for instance,
low-dose medical X-ray imaging. At this, our contri-
butions include, in particular, modeling the effect of
typical nonlinear mappings and establishing a link to
physical quantities like the exposure time.

Moreover, we presented a robust and fast esti-
mator for signal-dependent Gaussian noise with high
performance in, both, homogeneous areas and natu-
ral clinical structure. Inter alia, it has shown that,
in spite of its inferiority regarding the reduction of
Gaussian noise, at large, prefiltering by a3 × 3 me-
dian filter clearly outperforms3 × 3 binomial pre-
filtering. All results are also valid for noise that is not
signal-dependent and the noise estimator can easily be
adapted for such applications.

Modeling as well as noise estimation are a req-
uisite of utmost importance in order to yield consid-
erable structure-preserving noise reduction. For this
reason, the results presented in this paper are the basis
of the noise reduction methods (e.g., [11]) developed
by our research groups for clinical application.
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