
Collaborative Software Engineering of the Life-Critical Systems

DENISS KUMLANDER
Department of Informatics

Tallinn University of Technology
Raja St.15, 12617 Tallinn

ESTONIA
 http://www.kumlander.eu

Abstract: - A collaborative software engineering approach for the life-critical systems is proposed in this paper. Life-
critical systems are systems, where any fault can produce a danger for humans or can be extremely expensive. The life-
critical systems’ development is well known as expensive and slow one. Mostly it is because of its nature – fault-free
development. The approach to be proposed includes two main elements: an effective feedback between neighbour steps
of the development work cycle and a collaborative work team either global for the entire project or within neighbour
steps. In the result, a development team can increase their productivity keeping products on the same quality level by
eliminating certain extra-time spent on local verification by using next phases to support such evaluation.

Key-Words: - Collaborative software engineering, and life-critical systems

1 Introduction
Life critical software systems are software packages that
should work correctly to ensure safety of people, in other
words each failure of such systems could be dangerous
for people lives. One example of such system could be
software controlling different submarine systems. If any
element will fail then the submarine crew will be in a
sufficient danger. Sometimes life critical systems are
also extended to systems controlling other important or
extremely expensive mechanisms and equipment
because loosing those systems due software failures is
also too expensive. An example of such equipment could
be a satellite and its software could be a launch system’s
module. A historical example of software failure in such
systems could be the Mariner I space probe, which was
launched in 1962 and was destroyed during several
minutes after its start since an error occurred in the
controlling software. All these demonstrates that
software engineering have certain restrictions on
methodologies to be used since should guarantee the
highest quality unlike commercial software
development, where such high quality is compromised
by the end product price.
 On the other hand methodologies used so far in the
life-critical systems development can be defined as
“heavy-weight”-ed as requires quite a lot of additional
work and are not flexible enough. It results in many
cases in very ugly software with an enormous cost.
Following the main principle of nowadays software
development looking for approaches ensuring the
simpler and more flexible development cycle and
increasing quality of the resultant software we could
define an increasing demand for life-critical software
engineering improvements that will not compromise

software end quality. Here a collaborative software
engineering principle is proposed to be applied, which is
derived from a commercial software development
principle called supporting software engineering that
was described in series of our previous works.
The paper is organised as follows. The section 2 briefly
describes the software development work cycles of
different high-level approaches. This section describes
an approach to which the collaborative principle will be
proposed and an approach from which certain parts of
the supporting design will be inherited. The following
section introduces the supporting software engineering
principles and demonstrates how those are transformed
into the collaborative software engineering for the life-
critical systems. The forth section lists some potential
danger that a software engineers should be aware of
implementing the proposed approach and gives some
guidelines on avoiding those. The last section concludes
the paper.

2 Software Engineering Approaches
Software engineering approaches can be divided into
two major categories:
• Classical or traditional;
• Modern or iterational.

 Below we are going to demonstrate the main
difference by building a general model from which this
difference can be derived.
 There are a lot of models for software development
and some of them are quite basic ones like the waterfall
or spiral software development [1, 2, 3, 4]
methodologies. Therefore it is a bit hard to build a model

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 35

mailto:kumlander@gmail.com
http://www.kumlander.eu/

that could adequately reflect all those on a general level,
but the following very simple one should demonstrate
basic principles from most of them:

Fig. 1 High-level software development work cycle

 Notice here the dashed arrow that denotes difference
between main approaches. The traditional one says that
all steps should be done completely before moving to
another one so there is no cycle during one complete
software implementation, although different versions
could still exist, but each version should be ready to use
on 100% and a time interval between different versions
normally is sufficient [1]. Therefore the last dashed
arrow is missed in this approach. Notice also that the
testing and verification step, which is the last one and
normally interact with the development step returning
errors and getting new releases and fixes. Now let’s
examine the second main approach. The modern iterative
software implementation and engineering develops a
complete package in several cycles [1, 5], so the
transition between the testing phase and requirements
formulation exists in this type approaches and therefore
is followed several times. It means that the dashed arrow
becomes “visible” and is followed several times as
software implementation contains several cycles.
 It is widely adopted that life critical system’s
software engineering follows the traditional approach
since there is no possibility to do and test intermediate
releases as a potential loss is too big. At the same time
the impossibility to do a cycle and fix mis-designs and
other errors produces a need to spent much more time
verifying each step than normally it will be needed.

3 Collaborative Software Engineering
A central idea of the supporting software engineering
approach of the iterative software development is
establishing an efficient feedback inside a software
development cycle between neighbour steps into
addition to the global feedback that is an iteration / cycle
by itself [6]. The feedback is provided from the next step
to the previous one in case any error is done on the
previous step. The “efficient” term means that it is not
enough to establish such feedback, but it should be
guaranteed to be working using different approaches,

rules and an infrastructure. The efficient feedback’s goal
is to provide information and correct mistakes faster than
using the global feedback, i.e. inside a cycle instead of
waiting until the next cycle will start and the previous
step as a part the next style will be activated.

Requirements Design

Implementation Testing /
Verification

Requirements Design

ImplementationTesting /
Verification

Fig. 2 High-level software development work cycle with
concurrent feedback connections

 The figure 2 demonstrates changes done by the new
approach in the software development work cycle in
compare to the earlier version presented on the figure 1.
The dotted arrows represent a feedback cycle, which is
concurrent internal cycle as it is denoted by the curved
arrows. This feedback allows to move back as many
times as it is needed, but the number of internal
iterations is selected by each team / company separately
to avoid staying on the same step / version in the
development progress schedule.
 A work cycle for the life-critical systems, basing on
the previously described restrictions and properties
would look like the one on the figure 3.

Requirements Design

ImplementationTesting /
Verification

Fig. 3 Collaborative software engineering’s work cycle
for the life-critical systems

 There is no transition from the last work cycle stage
to the first of a new work cycle as a product is produced
in one cycle. Therefore internal feedbacks and cycles
become much more important than in iterative
approaches and are the main proposition of the paper. So
far one cycle software engineering required some extra
time to verify the step output before moving to the next
stage. Despite of that errors, missed information, un-
designed and un-specified parts where still existing. The
only transition where the feedback was established long
time ago and was always working was between testing

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 36

and verifying and software development phases. The
remaining steps was “independent” from the feedback
point of view and therefore many software engineers had
to solve the described earlier problems arising on their
stages either by ignoring those or having some kind of
self-made fixes basing on the previous stage documents
logic. Notice that such approach could be dangerous in
many cases. The other way was to cancel the step fully
and re-run the project from scratch (in case of finding
sufficient problems) although each stage team could still
re-use their previous work the next time. All this resulted
in sufficient time losses and decreased usability of the
system (both human and computer interfaces). The
proposed feedbacks’ system enables:
• Return to a previous step (at least partly) and

correct mistakes. This could include raising an event
(error request, question etc) to more than one level,
for example up-to to the first stage. Notice that initial
requirements gathering can be greatly verified during
the implementation stage done on a lower level on
some aspects (notice that only some as other
techniques [7] have to be applied to ensure overall
success of the requirements formulation step from
elements that can not be developed verified).
Therefore the efficient feedback leads to a new
opportunity within a project: using next steps to
verify correctness on previous, i.e. feedback routines
are used to ensure correctness of a product via all
work cycle stages. All this will stabilize the
development and design process;

• Improve or establish collaboration between

different teams [8] that normally results in a higher
performance of outputs as different teams see topics
from different points of view and therefore have
better overview of advantages, disadvantages,
opportunities and problems. An extra effect of the
increased collaboration is a smother and faster work
flow as different phases teams are starting to
formulate one big project team of persons willing to
work together in a comprehensive manner.

4 Potential Dangers of the Approach and
Ways to avoid those
Any more or less complex approach has its own
potential dangers that have to be foreseen and evaluated
to ensure that the approach can be effectively applied.
The collaborative software engineering of the life-critical
systems isn’t an exclusion from this rule. This chapter
describes certain conditions/environment where the
approach cannot be applied and dangers that should be
closely monitored and avoided.

 First of all an organisation applying the collaborative
software engineering by establishing feedbacks should
ensure that this feedbacks routine is not formal and is
really working. The following problems could arise:
• The feedback channel should not be overfilled,

otherwise feedbacks can be lost, ignored or will not
be posted any more. This situation could be produced
by two opposite circumstances:
o The previous step team is unprofessional and the

next team generates a lot of error requests on a
permanent base;

o The next stage team doesn’t understand an
output generated by the previous team adequately
and starts to generate faulty (incorrect) error
requests;

• The feedback channel is not used or is ignored. It

could happen because nobody is informed about the
feedbacks possibility. Another case: nobody believes
in any reaction of a feedback messages and therefore
nobody posting messages. This could happen
because of a pure communication and attitude
between teams. The collaborative work is possible
only in an innovating supporting organisations with
well-established communication channels, personnel
that is willing to cooperate and is informed on those
possibilities;

• The collaborative work and the feedbacks system

are not supported by a required infrastructure. An
organisation should ensure that the approach
processes are supported by dedicated services
ensuring that none of the following is true:
o It is hard to publish a feedback; usability of the

feedback publishing/ tracking system is low;
o Feedbacks can be lost in the system or are not

associated to any person;
o There is no possibilities to track feedbacks and

get an efficient information on its status, activities
and persons who either are dealing or worked
with each actual feedback post;

• Communication gaps: An efficient feedback

impossible if information is corrupted during the
communication process. It can be or not related to the
communication. The first case is already described,
so here communicated persons problems will be
discussed. The corruption of information can occur
because of inequality in knowledge, experience,
background etc of the involved persons (senders,
receivers, and messengers). It can be produced by
impossibility to provide full information
communicating by phones (loss of visual
information), slow or bad lines including internet
communication forcing to compact messages. The

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 37

most common scenario of this case is a distributed
organisation with branches forced to communicate
over long (extra long) distances [9, 10]. The
following methods could be applied to avoid
described problems:
o Communication channel is supported by a

dedicated infrastructure;
o Teams that are communicating mostly locates as

close to each other as possible;
o Feedback are verified by a proper

documentation routines (avoiding unnecessary
bureaucracy);

o Good timing for the communication and “right”
persons that are able send/receive information to
be transmitted;

o Additional methods improving cross-team
collaboration like informal contacts etc.

• Security restrictions: this is a problem that is

specific for the life-critical systems’ development
environment especially in the military sector. There
can be some complex security rules and restrictions
dictating communication rules and potentially
disabling moving of information back, collaborating
of teams from different phases’ and so forth. Those
restrictions are a “physical” barrier on the feedback
communication flow, which can not be avoided and
collaborative software engineering cannot be used in
such organisations.

5 Conclusion
A collaborative software engineering approach for the
life-critical systems was proposed in this paper. This
approach includes two main elements: an effective
feedback between neighbour steps of the development
work cycle and a collaborative work team either global
for the entire project or within neighbour steps. The life-
critical systems’ development is well known as
expensive and slow one. Mostly it is because of its
nature – fault-free development. At the same time the
collaborative software engineering can increase
productivity of the development team keeping products
on the same quality level by eliminating certain extra-
time spent on local verification by using next phases to
support such evaluation. At the same time the
organisation should ensure that the established feedback
routine is really effective and working; is supported by
the required infrastructure (dedicated services) and is
traceable. The approach cannot be used if there is any
kind of restrictions on communicating between the
development stages due, for example, security reasons.

References:
[1] B.W. Boehm, A spiral model of software

development and enhancement, Computer, Vol. 21,
No. 5, 1988, pp. 61-72.

[2] I. Somerville, R. Jane, An Empirical study of
industrial requirements assessment and improvement,
ACM Transactions on Software Engineering and
Methodology, Vol. 14, No. 1, 2005, pp. 85-117.

[3] O. Forsgren, Churchmanian co-design – basic ideas
and application examples, Advances in Information
systems development: bridging the gap between
academia and industry, Springer, 2006, pp. 35-46.

[4] M. Rauterberg, O. Strohm, Work organisation and
software development, Annual Review of Automatic
Programming, Vol. 16, 1992, pp. 121-128.

[5] P.R. Reed, Developing applications with Visual
Basic and UML, Addison-Wesley, 1999.

[6] D. Kumlander, Supporting Software Engineering,
WSEAS Transactions on Business and Economics,
Vol. 3, No. 4, 2006, pp. 296-303.

[7] I. Somerville, P. Sawyer, Requirements Engineering
– A good Practice Guide, Wiley, 1997.

[8] D. Kumlander, Bridging gaps between requirements,
expectations and delivered software in information
systems development, WSEAS Transactions on
Computers, Vol. 5, No. 12, 2006, pp. 2933-2939.

[9] C.D. Cramton, S.S. Weber, Relationship between
geographical dispersion, team processes, and
effectiveness in software development work teams,
Journal of Business Research, Vol. 58, No. 6, pp.
758-765

[10] D. Kumlander, Providing a correct software design
in an environment with some set of restrictions in a
communication between product managers and
designers, Advances in Information systems
development: bridging the gap between academia
and industry, Springer, 2006, pp. 181-192.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 38

