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Abstract: - The algorithm formula in explicit format for the maneuver of wheeled mobile robot (WMR) with 
four steered independently driven wheels (4WS4WD) is rarely discussed. Based on the constraints of pure 
rolling and non slip, the existence of ICR (Instantaneous Center of Rotation) has been proofed toward this 
class of robots. A generic maneuver algorithm based on ICR (including the direction of rotation) has been 
presented in explicit format. And a generic maneuver algorithm with constraints has also been investigated 
explicitly to limit the orientation range of steering wheels. Several typical maneuver modes with rotation 
direction have been drawn from the generic maneuver algorithm mentioned above. Results from simulation 
and tests are presented to demonstrate the feasibility of proposed algorithms. 
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1 Introduction 

The maneuver features of a WMR are very 
important in the domain of its application. A WMR 
with 4WS4WD is a redundantly actuated robot 
under the constraints of pure rolling on horizontal 
plane. The explicit maneuver algorithms about this 
class of robot mentioned above are rarely discussed 
though several similar literatures are available. 

 B.C. Besselink proposed a non-conflicting 
secondary steering algorithm on vehicles with two 
independently driven wheels and gives a control 
diagram about the maneuver control strategy [1]. 
Thomas Bak presented a mobility control algorithm 
to a robotic platform used in agriculture by 
decoupling adjustments in position from adjustments 
in orientation [2]. Thomas Bak also gave control 
algorithm to a mobile robotic platform by using 
hybrid control strategy to a nonlinear trajectory 
tracking issue. The singular points in configuration 
space had been discussed [3]. To a four-driven and 
four-steered mobile robot, a kind of practical 
maneuver algorithm in explicit format is really 
needed in the process of control. Thus a research 
focused the generic maneuver control algorithm has 
been carried by our research group.  

In this paper, the features of the mobile robot are 
introduced in section 2. The proof of existence of 
ICR has been presented in section 3. A generic 
maneuver algorithm is derived in section 4. A 
generic maneuver algorithm with constraints is 
given in section 5. Test results have been 
implemented in section 6. Conclusions and future 
work are proposed in section 7. 

 
2   Robot Features 
The Fig.1 is robot platform with reconfigurable 
chassis and caster angles and the chamber angles of 
wheels. The differential device makes four wheels 
of robot contact the terrain and average load to the 
four wheels. Further more, a less pitch of robot body 
will be available when robot travels in rough terrain. 
The robot has the potential ability to perform 
diversified steering modes, such as Omni-directional 
mode, Ackerman mode, Double-Ackerman mode, 
Point-turn mode, etc. 

 
3   Existence of ICR 

Fig.1 Mobile robot with 4WS4WD 

Hypothesis: The robot is in horizontal plane 
with four rigid driven wheels and rigid frame. The 
wheels can steer around their vertical axles. The 
wheels contact with ground at a point with pure 
rolling. 

Theorem: The motion of a robot with 
4WS4WD in a plane under the assumption above 
can be described as a rotation motion around ICR 
and a translation motion (in this case, the ICR can be 
regarded as being at infinity), i.e. there always exists 
an ICR at any instantaneousness.  
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Proof:  As shown in Fig.2, L and W are the 
length and width of the robot frame. 0 atan(W/L)γ = ; 

2 20.5p W L= + The main kinematic parameters of 
WMR are in Table 1.  

Table 1. Kinematics Parameters of Mobile Robot 
Wheels α(rad) β （rad） l（m） 

1c γ0 β1 p 

2c 
2π－γ 

2π－γ0

β1β1β1 

β2

p 

3c π－γ0 β3 p 

4c π＋γ0 β4 p 

The kinematic constraints of the robot can be 
written as follows:   

 
1( ) ( ) 0sC Rβ θ ξ =                  (1) 

Where the rotation matrix  
cos sin 0

( ) sin cos 0
0 0

R
θ θ

θ θ θ
⎡ ⎤
⎢ ⎥= −⎢
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⎥
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( )
cos(2 ) sin(2 ) sin
cos( ) sin( ) sin

s

p
p

C
p

p

γ β γ β β
π γ β π γ β β

β
π γ β π γ β β

π γ β π γ β β

+ +⎡ ⎤
⎢ ⎥− + − +⎢ ⎥=
⎢ ⎥− + − +
⎢ ⎥

+ + + +⎣ ⎦

  (2) 
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1
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p
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As          1( ) [ ( )]sR Ker Cθ ξ β∈  
For vector 1( ) [ ( )]sn R Ker Cθ ξ∀ = ∈ β , it always 

satisfies the coupled equations 1( ) 0sC nβ = . The 
ample and essential condition of the existence of 
non-trivial solutions for these homogeneous coupled 
equations is as follows:  

1[ ( )] 2srank C β ≤                     (4)  
A zero motion line [4] is a line through the 

horizontal axis of a wheel, perpendicular to the 
wheel plane. In coordinate in Fig.2, the four zero 

motion lines are described by the following 
equations.   

1 1 1cos sin cos( )x y p 0δ δ δ γ+ = −               (5) 
2 2 2cos sin cos( )x y p 0δ δ δ γ+ = +               (6) 
3 3 3cos sin cos( )x y p 0δ δ δ γ+ = − +              (7) 
4 4 4cos sin cos( )x y p 0δ δ δ γ+ = − −              (8) 

It can be written in matrix form: 
AX B=                       (9) 

The coefficients matrix:  
1 1

2

3 3

4 4

cos sin
cos sin
cos sin
cos sin

A 2

δ δ
δ δ
δ δ
δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

               (10)          

The expended matrix:  
1 1 1 0

2 2 2 0

3 3 3 0

4 4 4 0

cos sin cos( )
cos sin cos( )
cos sin cos( )
cos sin cos( )

b

p
p
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−
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         (11) 

To coupled equations (11), the ample and essential 
conditions of the existence of non-trivial solutions 
for this coupled equations is as 

( ) ( )brank A rank A=               (12) 
To ( , ]iδ π π∀ ∈ − , no iδ  can satisfy: 

cos sin 0i iδ δ= =  
           1 ( )rank A 2∴ ≤ ≤

)
             (13) 

1 ( brank A≤                (14) 
After a primary transformation:   

1
1 2

11 ( )b s
Col Col

ColA C β− ×⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ and  i nt er change  
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p
p
p
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δ δ δ γ
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− +
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2 2 2 0

3 3 3 3 0

4 4 4 0

cos sin cos( )
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Where , ( 1,...,4)i iΔ = is one of the 3rd order 
sub-determinates of matrix Ab .  
1). When ( ) 1rank A =  
The 2nd order sub-determinates of matrix A. are as 

Fig.2 Kinematics parameters of mobile robot in coordinate. 
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1 1
1

2 2

cos sin
0

cos sin
δ δ
δ δ

Δ = =        (20) 

1 1
2

3 3

cos sin
0

cos sin
δ δ
δ δ

Δ = =        (21)                     

1 1
3

4 4

cos sin
0

cos sin
δ δ
δ δ

Δ = =        (22) 

2 2
4

3 3

cos sin
0

cos sin
δ δ
δ δ

Δ = =        (23) 

2 2
5

4 4

cos sin
0

cos sin
δ δ
δ δ

Δ = =        (24) 

3 3
6

4 4

cos sin
0

cos sin
δ δ
δ δ

Δ = =        (25) 

A solution can be achieved from (20) to (25): 
1 2 3 4δ δ δ δ= = =           (26) 

To [ , ] ; ( 1, 2,3, 4)i iδ π π∈ − = , as long as 0,iδ π≠ or 
 0.5 , ( 1,2,3,4)i iδ π≠ ± =  (In these cases the robot are 

degenerated to a bicycle with two wheels!), there 
must be at lest a non-zero 2nd order sub-determinates 
in matrix Ab .                                                                                       

( ) 2brank A∴ =  
( ) ( )brank A rank A≠           (27) 

There is no solution in the coupled equations 
(9). This situation presents an obvious geometrical 
meaning: the zero motion lines of the four wheels 
are parallel and have no intersect point. ICR can be 
regarded as being at infinity.   
2). When  ( ) 2rank A =

There must be a , 0 ( 1,2,...,6)i iΔ ≠ =
( ) ( ) 2brank A rank A∴ = =          (28) 

There are non-trivial solutions in the coupled 
equations (9). This situation presents an obvious 
geometrical meaning: the zero motion lines of the 
four wheels intersect at a common point, i.e. ICR 
exists. The relations of 1 2 3 4, , ,δ δ δ δ are described in 
(16) to (19). 
 
4   Generic Maneuver Algorithm 

The relations of control parameters of WMR 
with 4WS4WD are shown in Fig.3. 

 

The steering angles of wheel are as follows: 
( , ]; 1,2,3,4i iπ πδ ∈ −     =              (29) 

The position of ICR is described by the 
maneuver radius and the 
azimuth

[0, )R ∈ ∞

( ,Rβ ]π π∈ − − . The following sets are 
defined to identify the position of ICR.  
Let  1{( , ) | ( 1) sin ( 1) / 2 0}d d

R RM R R Wβ β +
+ = − + − ≥

R Wβ β +
− = − + − <

≥

<

≥

<

≥

<

  M R  1{( , ) | ( 1) sin ( 1) / 2 0}d d
R R

{( , ) | ( 1) sin ( 1) / 2 0}d d
R RN R R Wβ β+ = − + −  

{( , ) | ( 1) sin ( 1) / 2 0}d d
R RN R R Wβ β− = − + −  

1{( , ) | ( 1) cos ( 1) / 2 0}d d
R RP R R Lβ β +

+ = − + −  
1{( , ) | ( 1) cos ( 1) / 2 0}d d

R RP R R Lβ β +
− = − + −  

{( , ) | ( 1) cos ( 1) / 2 0}d d
R RQ R R Lβ β+ = − + −  

{( , ) | ( 1) cos ( 1) / 2 0}d d
R RQ R R Lβ β− = − + −  

1 0{( , ) | , }R RS R R pβ β γ= = =  
3 0{( , ) | , }R RS R R pβ β π γ= = = −  

2 0{( , ) | , }R RS R R pβ β γ= = = −  
4 0{( , ) | , }R RS R R pβ β π γ= = = − +  

Where d is the rotation direction index, d=0 is for 
anti-clockwise and d=1 is for clockwise. 

The radius of each wheel around ICR is as 
follows: 

2 2 2
1 0.25( ) cos sinR Rr R W L RL RWβ β= + + − −  (30) 

2 2 2
3 0.25( ) cos sinR Rr R W L RL RWβ β= + + + −   (31) 

2 2 2
2 0.25( ) cos sinR Rr R W L RL RWβ β= + + − +  (32) 

2 2 2
4 0.25( ) cos sinR Rr R W L RL RWβ β= + + + +  (33) 

The steering angle of each wheel is as follows: 
1

1
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The wheel orientation vector Fig.3 Relations among control parameters of robot
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( , ]; 1, 2,3, 4i iδ δ δ δ δ π π1 2 3 4
Τ= ( , , , ) ∈ − =Δ ;

ise

e
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  (38) 

The velocity vector 
Τ

1 2 3 4, , ,= ( )V V V V V                     (39) 
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{ | min , ; ( 1, 2,3,4)}i i i i i maxV V V r g V V iμ∈ ≤ ≤ =   (44) 
where the unit vector  is perpendicular to the 
horizontal plane is identity 
vector . The constraint in (44) is the 
wheel-terrain constraint, where g is gravity 
acceleration and

0k  

0and ( 1,2,3,4)i i = r
( 1,2,3,4)i i =r

μ  is the frictional coefficients of 
the wheel-terrain. V is the maximum scalar 
quantity ofV . V is the velocity vector of 
centre of robot, the rotational velocity around ICR 

is: . 

max

( 1,2,3,4)i i =

/ , { | 0
/ , { | 0}

V R R R R
V p R R R

ω
∈ < <⎧

= ⎨ ∈ =⎩

}∞

We have done the simulations about the 
algorithm by Matlab7.0 and get the figures on the 
steering angles vs. andR Rβ  from Fig.4 and Fig.5: 
When 0 0 0, , 0R ,γ π γ γ π γβ = − − − + R p=and , r 0i =  
( 1,2,3,4)i = , singularity occurs. In our formula, we 
define 0 ( 1, 2,3, 4)i iδ = = . When R p< , the curve of 

, ( 1, 2,3, 4)i iδ =  is in irregular shape. When R p> , 
the tendency of the curve is regular, when Rβ  
increases, ( 1, 2,3, 4)i iδ =  also increase in the range 
of Rβ . The curves of  ( 1, 2,3, 4)i iδ =  take 
subsection shape. The tendency of maneuver radius 

  
of wheels can be viewed in Fig.6 and the curve takes   
symmetrical shape to some degree. Further 
calculation shows that the curves in anti-clock wise 
are the same to that in clock-wise. 

Fig.4 Steering angleδi (i=1,2,3,4) vs. andβR in anti-clockwise

 Fig.5 Steering angleδi (i=1,2,3,4) vs. R andβR in clockwise

 

Fig.6 Radius ri (i=1, 2, 3, 4) vs. R and βR in anti-clockwise  
 
5 Constrained Maneuver Algorithm 

[ / 2, / 2] ; 1, 2,3, 4i iπ πδ ∈ − = ;            (45) 
[0, ), ( ,RR β ]π π∈ ∞ ∈ − −  

The steering angle of each wheel is as follows: 
1 1

1
1 1

1

( 1) arcsin(0.5 cos ) / ( , )
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⎪ ∈⎪⎩
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=
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∩
  (47) 
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The wheel orientation vector 
( , ]; 1, 2,3, 4;i iδ δ δ δ δ π π1 2 3 4
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The velocity vector 
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{ | min , ; ( 1,2,3,4)}i i i i i maxV V V r g V V iμ∈ ≤ ≤   =   (56) 
The radius of wheel is given in (30) to (33). 

The results of simulations on the algorithm by 
Matlab7.0 are in the Fig.7 and Fig.8: 

 
In this algorithm, [ / 2, / 2]; 1,2,3,4i iπ πδ ∈ −   = .. 
The singularity is as the same situation in section 

4. We can see that the velocity of the driven wheel 
area (in blue colour) and the inversed velocity of 
driven wheel area (in red colour) distribute by 
interlacement, and these distributions are just 
opposite in the figure of the anti-clockwise rotation 
and clockwise rotation. To a certain value of R, 
when Rβ  increases, 0; 1, 2, 3, 4i iδ =   =    also 
increases. The radii distribution is relative to the 
rotational direction. The tendency of maneuver 
radius of wheels can be viewed in Fig.9 and the 
curve takes symmetrical shape to some degree. 
Further calculation shows that the curves in 
anti-clock wise are the same to that in clock-wise. 

 

Fig.7 Steering angleδi (i=1,2,3,4) vs. R andβR in anti-clockwise

Fig.8 Steering angleδi (i=1,2,3,4) vs. R and βR in clockwise

6   Test Validation 

Fig.9 Maneuver radius ri (i=1, 2, 3, 4) vs. R and βR in 

 Tests for different type of maneuver modes have 
been implemented. Fig.10 is for Ackerman mode, 
Fig.11 is for  Double-Ackerman mode, Fig.12 if for 
the test of robot rotating around the point where the 
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wheel 4 contacts the ground, Fig.13 is for the test of 
robot rotating around the point located within 
supporting area, Fig.14 is for the test of robot 
rotating around the point locates at the rear exterior 
supporting area, Fig.15 is for the test of robot 
rotating around the point locates at the sharp rear 
exterior supporting area and Fig.16 is  for the test 
of robot rotating around the point located at the 
sharp front of exterior supporting area. 

 
 

 

 

 
  A criterion pz which is called the ICR 
superposition rate is defined to describe the 
positional precision of center of trajectory circle of 
robot compared with ideal ICR position.  

positional windage of  trajactory circle  (1- ) 100%
radii of  trajactory circle p

t

pz =
R

Δ
×  

Table 2. Test Results of Maneuver Motion of Mobile Robot 

N
o 

( R, βR) 
(cm),( deg) pΔ  pz  

Max

pz  
Min

pz  
Ave.

pz  

1.1 98.49 1 (73.3,-110.7) 
1.3 98.22 

98.4 97.81 98.1 

1.5 97.95   
1.6 97.81 

   

4.8 98.6 
5.0 96.66 
5.1 96.60 

2  (1   
(50.0,-90.0) 

4.6 96.93 

96.9 96.60 96.7 

0.5 98.73 
0.4 98.98 
1.0 97.46 

3 (39.5,-131.4) 

0.8 97.97 

98.9 97.46 98.2 

0.3 98.46 
0.2 98.97 
0.6 96.93 

4 (19.6,-131.4) 

0.4 97.95 

98.9 96.93 98.1 

1..2 
Fig.10 Test of robot on Ackerman maneuver  mode 

97.60 
1..3 97.40 
1.1 97.80 

5 (50,-170) 

1.4 97.20 

97.8 97.20 97.5 

4..9 96.73 
Fig.11 Test of robot on Double-Ackerman maneuver  mode 

4.7 96.86 
4.8 96.80 

6 (150,-180) 

5.1 96.60 

96.8 96.60 96.7 

As in Table 2, the average of pz takes decrease 
tendency with the radii of trajectory of robot , this 
result shows that the windage of the steering angle 
of wheels will cause biggish errors. The ICR 
superposition rate is great than 90%. 

tR

 
7   Conclusion and Future Works 

Fig.12 Test of robot rotates around the point where wheel 4 
 contacts with ground 

A general description about the maneuverability 
of robot on plane is derived. The motion of a robot 
with 4WS4WD on a plane under the kinematical 
constraints can be described as a rotation motion 
around ICR and a translation motion (in this case, 
the ICR can be regarded as being at infinity). The 
proof of existence of ICR has been given. A generic 
maneuver algorithm around the ICR has been 
developed, and the singularity has been analyzed. 
This algorithm has the advantage of continuous 
wheel steering motion. Another generic maneuver 
algorithm with the range constraints of steered 
wheels based on ICR has been developed. And the 
singularity has been analyzed. This algorithm has 
the advantage of high efficiency and lower 
energy-consumption. A wheel-terrain constraint has 
been presented in the velocity control to ensure 
implementation of the two algorithms. Tests for 
robot rotating around different position of ICR have 
been implemented to verify these algorithms. 

Our future works include research on the error 
analysis on the maneuver mode. 
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exterior supporting area 

Fig.15 Test of robot rotates around the point locates at the sharp rear 
exterior supporting area   

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007      156



[1] B.C.Besselink, “Computer control steering 
system for vehicles having two independently driven 
wheels,” Computer and Electronics in Aagriculture, 
vol. 39, pp.219-226, 2003. 
[2] Thoms Bak, Hans Jakobsen, “Agriculture 
Robotic Platform with Four Steering for Weed 
Detection,” Biosystems Engineering, vo87, no2, 
pp.125-136, 2004. 
[3] Thoms Bak, Jan Bendtsen, Anders P. Ravn, 
“Hybrid Control Design for a Wheeled Mobile 
Robot,” Berkeley University Web Site (November 
1, 2004). [On-line]. Available: 
www.eecs.berkeley.edu/ 
[4] Roland Siegwart, Illah R. Nourbrakhsh, 
Introduction to Autonomous Mobile Robot, London: 
The MIT Press, 2004, pp.67-68. 
[5] Tarokh M, McDermot G, Hayati S, Hung J. 
Kinematic modeling of a high mobility Mars rover. 
Proceedings of the 1999 IEEE International 
Conference on Robotics & Automation, Detroit, 
Michigan,1999,: pp.992-998 

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007      157

http://www.eecs.berkeley.edu/

