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Abstract:This paper presents a comparative study of the sensibility of knowledge-based systems and artificial neu-
ral networks applied to optical spectroscopy, a specific field of Astrophysics. We propose a description of various
neural networks models and the comparison of the results obtained by each technique individually and by a com-
bination of both. Whereas in previous works we developed a knowledge-based system for the automatic analysis
of spectra, we shall now use the analysis methods developed in that system to extract the most important spectral
features, by training the proposed neural networks with this numeric characterization. We do not only intend to
analyse the efficiency of artificial neural networks in classification of stellar spectra; our approach is also focused
on the integration of several artificial techniques in a unique hybrid system. The proposed system is capable of
applying the most appropriate classification method to each spectrum, which widely opens the research in the field
of automatic spectral classification.

Key–Words:Neural Networks, Knowledge-based Systems, Fuzzy Logic, Hybrid Systems, Spectral Features, Clas-
sification of Stars

1 Introduction

Stellar spectroscopy is one of the most powerful tech-
niques to study the physical conditions (temperature,
pressure, density, etc.) and chemical abundances of
stars. In general terms, a stellar spectrum consists of a
black body continuum light distribution, distorted by
the interstellar absorption and reemission of light and
by the presence or absence of absorption and emission
lines and molecular bands [1].

Once the spectra of a homogeneous sample of
stars have been collected and reduced, the study of the
distribution of spectral types and the analysis of spec-
tral data can help to understand the temporary change
of the physical conditions of stars from a statistical
point of view, and therefore, to learn about their evo-
lution. This is why spectral classification is one of the
fundamental aspects of the evolutionary study of stars,
and a phase that must be carried out in a fast, efficient
and accurate way.

The stellar classification sequence has been for-

malized in a widely adopted, two-dimensional clas-
sification system, also known as the Morgan-Keenan
system [2], which quantifies stellar temperatures and
levels of luminosity. Stars are divided into groups, i.e.
spectral types, that are mainly based on the strength
of the hydrogen absorption lines and on the presence
or absence of some significant lines of Ca, He, Fe and
molecular bands.

Due to historical reasons, astronomers clas-
sify the temperature of stars in a sequence called
OBAFGKM, ranging from the hottest (type O) to the
coolest (type M) stars. These spectral types are fur-
ther subdivided by a decimal system, ranging from 0
(hottest) to 9.5 (coolest). Thus, the coolest type O
star (T==23.000 K) is called O9.5, whereas the hottest
type B star (T==21.000 K) is called B0. In addition,
a luminosity class that depends on the intrinsic stellar
brightness is assigned to the star. Luminosity classes
I and II correspond to exceptionally luminous stars or
super giants, luminosity classes III and IV to giants
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and sub-giants respectively, and luminosity class V to
normal dwarf stars, such as our sun (a rather common
G6 V star).

The manual classification process is generally
based on the use of a reference catalogue of spectral
prototypes, classified in the MK system and selected
by human experts to be used as a reliable guide in the
whole process. In order to compare the stars that are
going to be classified with those of the reference cat-
alogue, it is essential to normalise all the spectra and
isolate the continuous component (affected by inter-
stellar reddening). Only then the comparison can be
focused on the information of the spectral lines. At
this point, the standardised spectra must be scaled to
make their magnitudes equivalent to the stars of the
reference catalogue.

On the basis of the scaled and normalised spectra,
experts try to determine the spectral type and the lu-
minosity in the MK System. They measure and study
the relation between some absorption lines and the
depth of certain relevant molecular bands, and as a re-
sult they obtain the first classification of each star [3].
This initial classification is refined by superposing the
unclassified spectra and those of the reference cata-
logue that correspond to the same spectral type, until
the spectral subtype is finally determined.

Fig. 1 shows the last phase of a manual classifica-
tion process. The black line represents the spectrum
that is being classified, whereas the discontinuous line
represents the spectrum of the reference standard star
of the same spectral type.

Figure 1: Manual Classification Process

As part of an on-going project devoted to the
study of the last phases of stellar evolution, we have
collected a sample of approximately 400 stellar spec-
tra from astronomical observations carried out at sev-
eral telescopes. In order to extract useful information
from the individual spectra and to study the evolution
of the whole sample, we must complete a solid and
systematic spectral classification process.

The manual classification technique described
above is often rather subjective and not viable, es-
pecially so when the number of spectra is very high
and a large number of human resources is required.

It would therefore be advisable to optimise the pro-
cedure by means of an automatic, fast and efficient
computational technique that assists experts in spec-
tral classifications.

Among the existing techniques of artificial intel-
ligence, knowledge-based systems (KBS) and artifi-
cial neural networks (ANN) seem to be most appro-
priate to approach the problem of stellar classification.
Knowledge-based systems can reproduce the reason-
ing of experts in the field to classify spectra; neural
networks, capable of learning the intrinsic relations
of the patterns which with they were trained, have
already proven their efficiency in classification prob-
lems [4] [5].

In previous works, we have presented a
knowledge-based system for the classification of the
stellar spectra of Post-AGB stars in the visible elec-
tromagnetic spectral range [6]. The obtained results
led us to extend this system to stars of different lu-
minosities and to add new computational techniques,
such as fuzzy logic, in order to refine the automatic
classification process.

This article presents several models of neural net-
works that were designed and implemented to classify
spectra. Some well-known previous works have also
applied this artificial intelligence technique to stel-
lar classification [7] [8], obtaining diverse resolution
grades in the classification. Our intention is not to test
models that have already demonstrated their suitabil-
ity, but rather to implement various neural networks
models and as such carry out a sensibility analysis of
this technique in the classification of spectra; this will
eventually allow us to determine the best learning al-
gorithm and network structure for this specific prob-
lem.

Having tested both techniques (KBS and ANN),
we can analyse their respective adaptation to the prob-
lem and compare their results. Our study combines
signal processing [9], knowledge-based systems [10],
fuzzy logic techniques [11] and artificial neural net-
works [12], integrating them by means of a relational
database which stores and structures all the classifi-
cation information and thus provides us with an easy
and fast way to compare and contrast the results of the
different methods.

The final purpose of this comparative study is the
formalisation of a hybrid system that integrates all the
abovementioned artificial techniques and is therefore
able to determine the most appropriate classification
method for each spectrum type. A system that com-
bines knowledge-based systems, fuzzy logic and neu-
ral networks is more versatile than a system based on
one technique only, and it presents a greater adapta-
tion capability to the problem of stars classification.

The following sections start by describing the
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methods and techniques that were used in the devel-
oped knowledge-based systems: their algorithms are
applied to obtain a numeric parameterisation of the
spectra, which is subsequently used in the input layer
of most of the proposed neural networks models. Sec-
ondly, we describe the different sets that were cho-
sen for the training of the networks, and all the pre-
processing stages that are applied to the data before
they are presented to the networks. Thirdly, we de-
scribe the different neural models that were tested, and
we contrast their results. Finally, we propose a hybrid
solution that combines both artificial techniques.

2 First Approach: Knowledge-based
Systems

As mentioned in Sect. 1, our previous works proposed
the design and implementation of an automatic clas-
sification system that provides the user with a com-
fortable tool for the processing of spectra of luminos-
ity I, III and V -stars. That first approach integrated
signal processing, knowledge-based and fuzzy tech-
niques, obtaining a very satisfactory emulation of the
current manual process. Our final system was able
to classify stars with a success rate very similar to
the agreement percentage between experts in the field
(about 80%), and allowed two classification modali-
ties: spectra with no given luminosity class, and spec-
tra of stars with a well-known luminosity level.

This paper does not describe the developed sys-
tem in detail, since a more complete description can
be found in [13]. We only include a brief explana-
tion of the different modules so as to clarify how the
spectral parameters are obtained and measured.

2.1 System Description
The developed system includes two different tools: a
spectral analyser and a stellar classifier.

The spectral analyser makes an exhaustive mor-
phological analysis (calculation of maxima, minima,
energy, etc.) of the spectra in order to obtain a nu-
merical parameterisation. The parameters are the ab-
sorption/emission lines and the molecular bands; we
consider 10 bands, 9 lines, and the relevant relation-
ships between them. The spectral analyser is equipped
with signal processing techniques to extract and mea-
sure the main spectral features of each spectrum. It is
developed in C++ [14] and integrates ad hoc ActiveX
components for the visualisation of spectra.

The analyser retrieves the spectral data from a re-
lational database that stores and structures the infor-
mation from human and bibliographic sources [15].
The stellar database is implemented by means of the

PostgreSQL Database Management System running
under Linux [16]. At present, approximately 500
spectra of our survey are stored in the database, and
they will soon be available via the Internet.

The stellar classifier is based on the development
of three different knowledge-based systems that com-
bine traditional production rules with credibility fac-
tors [10] and fuzzy logic [11], in order to manage the
uncertainty and imprecision that characterise human
reasoning in this field. The developed knowledge-
based systems use the parameterisation of the spec-
tral analyser to reason and reach a conclusion about
the spectral type and luminosity of each star. We ap-
plied the Shortliffe and Buchanan methodology [10]
to carry out an evolution with fuzzy sets and member-
ship functions that are contextualised for each spec-
tral type. We extracted and measured the classifica-
tion parameters in the spectra of the guide catalogues
(Silva [17], Pickels [18] and Jacoby catalogues [19])
by means of the spectral analyser. This allowed us to
define as many fuzzy variables as classification levels
(global, type and subtype) for each luminosity level,
as well as the different fuzzy sets and membership
functions determined by the values of the spectral
features in the spectra from the reference catalogue.
The classifier was developed in OPS/R2 [20] and in-
tegrated with the analyser by means of dynamic link
libraries (DLL).

Before entering the second approach, i.e. neural
networks, we shall describe in detail the algorithms
designed to extract and measure the spectral param-
eters that are used as the input layer of most of the
proposed neural networks models.

2.2 Morphological Algorithms
From a morphological point of view, an absorption
line is a descending (ascending for emission) deep
peak that appears in an established wavelength zone
[3]. To accurately calculate the intensity of each line,
we carry out an estimation of the local spectral con-
tinuum. We smoothen the signal with a low pass fil-
ter, excluding the peaks in an interval around the sam-
ple where the line was detected. This filter is imple-
mented by a five-point moving average method that
selects the five more stable fluxes. That is

Cj =

(∑j+n
j−n Ei ∗Xi

N

)
, (1)

whereCj is the estimation of the continuum for sam-
ple j, Ei is the flux in samplei, N is the number of
values used in the moving average method to calculate
the local spectral continuum, andX is a binary vector
that indicates the representative fluxes of the spectral

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007      112



continuum in the zone. This means thatXi = 1 if Ei

is a flux value representative of the local spectral con-
tinuum, andXi = 0 if Ei is a peak. The intensity is
positive for the absorption lines and negative for the
emission lines.

A molecular band is a spectral zone where the flux
suddenly decreases from the local continuum during
a wide lambda interval [3]. For the molecular bands
this means that we only have to measure their energy
to decide if they are significant enough. In this case,
the upper threshold line for each band is calculated by
means of linear interpolation between the fluxes in the
limits of the interval defined for each band. Then, the
area between this line and the axis of abscissas is cal-
culated with discrete integral; the area that surrounds
each band is calculated by integrating the flux signal
between the extremes of the band. Finally, the flux
of the band is obtained by subtracting both calculated
energies. That is

Blr =
∫ r

l
L(λi)−

∫ r

l
E(λi) , (2)

whereBlr is the flux of the band between the samples
l andr, L is the projection line,E is the flux function,
λ the wavelength,l the left limit of the band andr the
right limit. Since the obtained value becomes more
negative as the band becomes deeper and wider, posi-
tive or negative values close to zero are not considered
as bands.

We have also elaborated other algorithms to esti-
mate the flux of some additional spectral features that
are not directly considered in the manual process, such
as spectral energy. We have examined the spectra clas-
sification capacity of these features.

2.3 Enhanced Knowledge-based Systems

An additional research consisted in improving the de-
veloped knowledge-based systems by applying the re-
sults of the best neural models, which shall be de-
scribed in the next section. The weights of the out-
put layer units were analysed so as to determine, for
each spectral type, which input parameters have more
influence on the output. The normalised values of the
higher weights were included in the knowledge-based
systems, implemented for stars of luminosity I, III and
V, in the shape of credibility factors of the rules that
correspond to the most influential parameters for each
spectral type.

Table 1 compares the performances of the en-
hanced version of the knowledge-based systems and
the original version described above. These results
proceed from the performance evaluation of a set of
100 spectra. On the basis of this comparison, we can

affirm that the modification of the reasoning rules (us-
ing the weights values of the trained neural networks)
has resulted in a slightly significant improvement of
the performance of the original knowledge-based sys-
tems (around 2%).

Table 1: Performance for Original and Enhanced KBS

Spectral Types Original KBS Enhanced KBS

B0-A9 84.3% 87.5%

F0-G9 91.8% 93.2%

K0-M7 95.5% 96.7%

3 Second Approach: Artificial Neu-
ral Networks

We have chosen a complete and consistent set of spec-
tra in order to design and test the neural networks that
will be applied to the problem of stellar classification.
The selected spectra proceed from three different cata-
logues, which were previously used for the design and
implementation of the knowledge-based systems’ rea-
soning rules. This strategy has allowed us to compare
the results of both techniques.

We consider 285 spectra that belong to the cata-
logues of Silva [17] (42 spectra sampled in the range
of 3500 to 8900Å with 5 Å of spectral resolution),
Pickels [18] (115 spectra sampled in the range of 1150
to 25000Å with 5 Å of spectral resolution) and Jacoby
[19] (128 spectra sampled in the range of 3510 to 7426
Å with 1.4 Å of spectral resolution). These spectra
cover all the types and luminosities described in Sect.
1 and are sufficiently representative, because they of-
fer a continuous transition of the spectral features be-
tween each spectral type and its adjacent types.

The training set consists of approximately 50% of
the spectra of each spectral type, leaving around 15%
of them to validate the learning, and the remaining
35% to test the networks. Table 2 shows the distribu-
tion of the sets of spectra that were chosen to design
the networks.

The training, validation and testing patterns that
are presented to the neural networks were obtained au-
tomatically by adding the necessary functions to the
spectral analyser developed in the knowledge-based
systems approach.

These patterns include the measurement of 25
spectral features (absorption and emission lines,
molecular bands, relationships between lines and
spectral energy) [3] that are extracted and measured
by the algorithms described in Sect. 2.2. We do not
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Table 2: Composition of the Three Spectra Datasets

B A F G K M Total

Train. Set 32 27 27 27 18 14 145

Valid. Set 6 7 6 7 8 6 40

Test Set 21 16 15 15 16 17 100

Total 59 50 48 49 42 37 285

make a previous selection of the parameters that con-
cern each spectral type. As a result, the input layer
of the neural models proposed includes 25 neurons,
one for each parameter, and an extra neuron (teaching
input) in the case of supervised learning.

Before calculating the value of the 25 spectral pa-
rameters for the construction of the different pattern
sets, the spectra of the three catalogues were scaled to
flux 100 at wavelength 5450̊A in order to normalise
the flux values and adapt them to the guiding cata-
logues values. The catalogues we used cover various
spectral ranges, since we are not interested in the full
spectra, only in the spectral range where the spectral
parameters are located, i.e. from 3900Å to 7150Å
. The sampling frequency is not decisive and it can
therefore be different for each catalogue: the analyser
looks for the lines and bands in a fixed spectral zone
and includes an algorithm to calculate the catalogue
resolution.

Once the input values are obtained by the spec-
tral analyser, they must be normalised so as to be pre-
sented to the neural networks. Our study standardises
the inputs of the networks in two different ways:

1. Global normalisation: a global sigmoidal func-
tion is applied to all the parameters. This func-
tion normalises the input parameters in the [0, 1]
interval. That is

1/
(
1 + e−x

)
(3)

2. Contextualised normalisation: a specific sig-
moidal function is applied to each parameter, that
is

1/
(
1 + e−(a∗x+b)

)
with a > 0 (4)

This function normalises the input parameters
in the [0, 1] interval and centers and scales the
distribution function of each parameter properly.
The constantsa andb were obtained by choosing
a minimum (X1) and a maximum (X2) for each
parameter, so that 95% of the parameter values

are found between them. Thus, solving the fol-
lowing system of equations, the values ofa and
b are determined for each spectral parameter, de-
pending on the chosen minimum and maximum.

0.025 = 1/
(
1 + e−(a∗x1+b)

)

0.975 = 1/
(
1 + e−(a∗x2+b)

)

The neural networks of the experiment cor-
respond to the general types Feed-forward, Self-
Organizing Maps (SOM) and Autoassociative Net-
works. In particular, we have implemented Back-
propagation networks, Kohonen networks and Hop-
field networks. In the first phase of the experimenta-
tion, we have studied the capacity of these three neural
models to differentiate between the spectral types A-
B, F-G and K-M separately. This previous study has
helped us to determine the best network for each pair
of consecutive spectral types (B-A, F-G, K-M). The
topologies, the learning functions and the results ob-
tained by these networks are described below.

3.1 Feed-forward Networks
The feed-forward model is based on two learning
stages: forward propagation and backward propaga-
tion. Training a feed-forward neural network with su-
pervised learning consists of presenting a set of input
patterns that will be propagated forward by the net-
work until activation reaches the output layer. This
constitutes the so-called forward propagation phase.
When the activation reaches the output layer, the out-
put is compared with the teaching input (provided in
the input patterns). The error, or differenceδj between
the outputoj and the teaching inputti of a target out-
put unitj, is then used together with the outputoi of
the source uniti to compute the necessary changes
of the link wij . Since the errors are propagated back-
wards, this phase is called backward propagation [12].

Most neural networks that currently function as
described are backpropagation networks. In our first
experiments, we have made use of three different
backpropagation learning algorithms: Standard back-
propagation, Enhanced backpropagation and Batch
backpropagation.

We have tested the three backpropagation learn-
ing algorithms for the spectral types A-B, F-G and K-
M; we have tested them through the use of the two
implemented normalisation processes; and we have
trained various backpropagation networks with and
without the validation set.

As for the topology of the networks, the different
implemented networks are shown in Table 3. These
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topologies were also tested for the three backpropaga-
tion learning algorithms.

Table 3: Topologies for Backpropagation ANNs

N◦ Hidden Layers Hidden Units Output Units

1 3 1
1 3 2
1 5 1
1 5 2
3 10, 5, 3 1
3 10, 5, 3 2

In the training phase, the topological order was
used to update the weights: firstly the weights of units
in the input layer were updated, then the units in the
hidden layers, and finally the units in the output layer.
The weights were initiated randomly with values in
the [-1, 1] interval. The number of training cycles, the
frequency of validation and the values of the learning
parameters (η, momentum andflat) were changed
during the learning phase of the different implemented
topologies.

We used the Stuttgart Neural Network Simulator
[21] (SNNS v.4.1) to implement the above described
networks and also to transform them to C code in or-
der to integrate the networks into the developed clas-
sification system. This simulator includes parameters
that evaluate the training process of backpropagation
networks: Mean Square Error (MSE) and Sum Square
Error (SSE). Our observations show that the imple-
mented networks converge when the MSE is equal
or inferior to 0.05, which is when the network be-
comes stable. If the training continues after having
reached this MSE rate, the network is overtrained and
its performance decreases. In this simulator, an output
greater than 0.5 is equivalent to 1, otherwise to 0. In
the analysis of the results, outputs near 0.5 were not
considered successful (from 0.45 to 0.55).

3.2 Self-Organising Maps
The Self-Organising Map algorithm of Kohonen
is based on unsupervised learning. SOMs are a
unique type of neural networks, since they construct
topology-preserving mappings of the training data
where the location of a unit carries semantic informa-
tion [22]. Self-Organising maps consist of two layers:
a one-dimensional input layer and a two-dimensional
competitive layer, organised as a 2D grid of units.
Each unit in the competitive layer holds a weight vec-
tor, Wi, which, after training, resembles a different
input pattern. The learning algorithm for the SOM
networks accomplishes two important objectives: the

clustering of the input data, and the spatial ordering
of the map which makes similar input patterns tend
to produce a response in units that are close to each
other in the grid. In the learning process, the input pat-
tern vectors are presented to all the competitive units
in parallel, and the best matching unit is chosen as a
winner.

We have tested various SOM networks for the
spectral types A-B, F-G and K-M, using the two im-
plemented normalisation processes. The Kohonen
networks do not use validation during the training, so
the validation spectra were applied to train the net-
work in addition to the training set. In this neural
model, we have added one spectral type to each cou-
ple of spectral types (B-A, F-G and K-M) in order to
let the network perform the clustering easily. This ad-
ditional spectral type was chosen to be as different as
possible from each couple of spectral types, i.e. we
have chosen type M for the nets of B-A and type B for
the nets of F-G and K-M.

The input patterns are again formed by the 25
spectral features, one for each unit in the input layer.
We have increased the number of units of the compet-
itive layer from 2 to 12.

The number of training cycles and
the values of the learning parameters
(h(t), r(t), decreasefactorforh(t) and
decreasefactorforr(t)) were changed during
the learning phase of the different implemented
topologies.

3.3 Autoassociative Networks
The autoassociative networks store single instances
of items, and can be compared to human memory.
In these networks, each pattern presented to the net-
work serves as both the input and the output pattern.
Autoassociative networks typically consist of a single
layer of nodes, with each node representing some fea-
ture of the environment. They use the Hebbian learn-
ing [12] as learning function. In this kind of learn-
ing, weights between learning nodes are adjusted so
that each weight better represents the relationship be-
tween the nodes. Nodes that tend to be positive or
negative at the same time will have strong positive
weights, whereas those that tend to be opposite will
have strong negative weights. Nodes that are uncorre-
lated will have weights near zero.

We have designed an autoassociative network
with 26 input units (one for each spectral feature and
an extra unit for the teaching input). The network
was tested with both implemented normalisation pro-
cesses.

In the training phase, we used the synchronous
order to update the weights. The number of training
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cycles and the values of the learning parameters (n)
were changed during the learning phase.

The SSE parameter was used to evaluate the net-
work performance, considering the same thresholds as
in backpropagation networks.

3.4 ANN Models for Complete Classification
After having tested three kinds of network models for
all the spectral types (Backpropagation, Kohonen and
Hopfield networks), we have selected the best network
of each class in order to compare the results and de-
cide which is most suitable for the classification of
each spectral type. The characteristics and topology
of the networks with a higher performance are de-
scribed below. These three neural networks have been
tested by using the 100 spectra from the test set in
order to evaluate which is the best network for each
spectral type. Considering the results, we may con-
clude that the best network for classifying spectral
types from B0 to A9 is the described backpropaga-
tion, as well as for types from F0 to G9. However,
the Hopfield network obtained a slightly higher suc-
cess rate for spectral types from K0 to M7. These two
neural models produced a similar performance rate,
whereas Kohonen networks obtained a lower perfor-
mance (around 75% in the best cases). This could be
due to the size of the training set: since these kinds of
networks are not supervised during training and have
to cluster the data by themselves, they need a training
set that is big enough to extract similarities and group
the data.

Once we have determined the best network for
each couple of spectral types, we can propose neural
models to accomplish the whole process of tempera-
ture classification. The basic networks for these mod-
els are the neural nets described in previous sections.

We propose two neural models to classify all the
spectral types at the same time:

1. Network of neural networks: we implemented a
structure of various neural networks based on the
best networks for each type.

The first level consists of a backpropagation net-
work that determines the global type of each
spectrum, i.e. early star (B, A), intermediate star
(F, G) or late star (K, M). This network presents
26 neurons in the input layer, 6 neurons in the
hidden layer and 3 neurons in the output layer
(one for each global type) and it has been trained
with the described training and validation sets.

The second level was built with the best neural
networks that were obtained for each couple of
spectral types: the chosen backpropagation net-
work for types B, A, F, G and the chosen Hop-

field network for types K and M. The first back-
propagation network decides which network the
spectra are sent to; sometimes the spectra are sent
to two different networks of the second level, es-
pecially those that are in the threshold of a spec-
tral type, for example B9A0.

The final trained networks of this model were im-
plemented in C++, which allows the spectra to be
sent from the first to the second level. The con-
ceptual design of this network is shown in Fig. 2.

2. Global backpropagation network: we have also
tested a global backpropagation network that
classifies spectra of all the spectral types simul-
taneously.

This network presents an input layer of 26 units,
with 8 neurons in the hidden layer and 6 units
in the output layer (one for each spectral type
that is of interest). The network was trained and
tested with the same set of spectra as the previ-
ous model, which guarantees a consistent com-
parison between them.

Figure 2: Model of the Net of Neural Networks for
Complete Classification

Fig. 3 shows the global performance and the re-
sults for each spectral type of the two models pro-
posed for full spectral classification of stars.

In view of the results, we consider that the first
approach is more suitable for the spectral classifica-
tion problem, since it can classify stars of all spectral
types with a success rate of 95.4%, as opposed to the
82% obtained by the global backpropagation network.

4 Final Results
The previous sections proposed several methods and
techniques to approach the problem of stellar classi-
fication. After having used two global artificial in-
telligence techniques, knowledge-based systems and
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Figure 3: Results of the ANN Models proposed for
Temperature Classification

artificial neural networks, we can now make a final
comparison between them.

We have selected the neural model with the best
performance (net of neural networks) and we have
analysed and classified, by means of knowledge-based
systems, the spectra that were used to test this net-
work (100 spectra). Since the neural network was
trained with the spectra used as reference catalogues
in the knowledge-based systems, a proper comparison
is possible.

Table 4 contrasts the behaviour of the two arti-
ficial techniques and that of two human experts who
collaborated on this project. In the neural networks,
we considered the ambiguous classifications (outputs
in [0.45, 055]) as an error, and in the knowledge-based
systems we do the same for classifications with a low
probability (lower than 75%).

Table 4: Final Comparison between KBS and ANN

Approach Global Spect. Type Lum.

Human Exp. A 99.0% 92.0% 81.0%

Human Exp. B 95.0% 85.0% 70.0%

KBS 98.6% 90.3% 78.2%

ANN 97.0% 95.4% 81.0%

Considering the results, we can conclude that
the neural networks approach is very performative in
obtaining the spectral types and luminosity of stars,
whereas knowledge-based systems present a higher
performance in determining the global stellar classi-
fication.

After an exhaustive analysis of the performance
and results of both artificial techniques (neural net-
works and knowledge-based systems), we now inte-
grate them in a unique system that guarantees a reli-
able, consistent and adapted classification of the stars.

Our strategy consists of choosing, among all the

models described in the previous sections, those meth-
ods that present the best performance for each classi-
fication level. This hybrid system is mainly based on
a knowledge-based system that determines the global
type of each star and that, according to the type, sends
the spectra to different neural networks in order to
obtain their spectral type as well as their luminosity
level. The hybrid system can determine the most ad-
visable classification method for each different spec-
trum type, achieving thus more versatility and adap-
tation than a classification system that uses only one
technique.

5 Conclusions

This paper has presented an exhaustive analysis of the
capability of knowledge-based systems and artificial
neural networks to classify the spectra of stars. We
have confirmed that neural networks are more ade-
quate to determine the spectral types and luminosity
of stars, whereas knowledge-based systems are best
suited to determine the global temperature.

In order to obtain the input patterns of the neu-
ral networks, the morphological analysis algorithms
developed in the knowledge-based systems were used
to extract and measure spectral features. Several net-
works were trained with this parameterisation, and
other networks with flux values of specific spectral
zones, but finally the first strategy obtained the best
performance.

We have described several models of neural net-
works and analysed their performance and results to
discover the best approach to the classification of
each spectral type. In particular, backpropagation net-
works, self-organising maps and autoassociative net-
works were designed and tested, and we implemented
various topologies in order to obtain the global clas-
sification, spectral type and luminosity of stars. The
best networks reached a success rate of approximately
97% for a sample of 100 testing spectra.

As an additional study, the developed knowledge-
based systems were modified by using the results of
the best implemented neural models, which signifi-
cantly increases the performance of the original sys-
tems.

Finally, both artificial techniques were integrated
in a hybrid system that determines the most appro-
priate classification method for each spectrum. This
hybrid approach is a versatile and flexible automatic
technique for the classification of stellar spectra.

For the evaluation period of the proposed models,
we could count on the essential collaboration of ex-
perts from the area of Astronomy and Astrophysics of
the University of A Corũna.
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At present, we are analysing functional net-
works in order to determine the suitability of this
artificial technique in stellar classification. We
are also completing the development of our stellar
database, STARMIND (http://starmind.tic.udc.es), so
as to make it accessible through the Internet. Our ob-
jective is to enable users worldwide to store and clas-
sify their spectra, which will help us to improve the
adaptability and accuracy of our automatic analysis
and classification system.
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