
Mobile Robot Path-planning Implementation
in Software and Hardware

LUCIA VACARIU, FLAVIU ROMAN, MIHAI TIMAR,
TUDOR STANCIU, RADU BANABIC, OCTAVIAN CRET

Computer Science Department
Technical University of Cluj-Napoca

26-28 Baritiu Str., Cluj-Napoca
ROMANIA

http://www.cs.utcluj.ro/

Abstract: Search algorithms represent a useful and reliable technique in solving path finding, path planning and
obstacle-avoidance types of problems that appear in mobile robots applications. The paper presents different
implementations, both in software and in hardware, of the Breath-First (BF) Search Algorithm. The software
implementation uses the standard type Intel Pentium 4 Processor and Java software environment. We also
implemented the search algorithm in a hardware-based environment, built upon Xilinx FPGA core
technologies. The comparison shows that the hardware implementation is an alternative to the classical
software implementation that is a larger resources and time consumer.

Key-Words: Mobile Robot, Path-planning, Search algorithms, FPGA, VHDL

1 Introduction
The mobile robots need a control system for
navigating in an environment [1]. A component of
this navigation control system is the planning of the
path the robot must follow. The path planning
system determines the current position of the robot
in the path, when the Start and the Goal position are
known, with respect to the same reference system in
the environment where the robot navigates. The
environment is static or dynamic, with discrete or
continuous representation.

To obtain the optimization of the path planning it
is necessary to avoid obstacle collisions and to
provide the shortest way or the shortest time from
Start Point to Goal Point. With respect to this, there
are different path planning implementations [2].

The search algorithms represent a useful and
reliable technique in solving path-finding, path-
planning and obstacle-avoidance types of problems.
BF (Breath-First), DF (Depth First), A-star
algorithms are successfully used to determine a
valid path [3]. The characteristics of these
algorithms allow them to be well fitted into mobile
robots applications.

The diversity of applications for mobile robots
and the diversity of environments where they
navigate require in path planning a large amount of
computer resources.

Another alternative to software implementation
of algorithms is the use of digital devices Field

Programmable Gate Arrays (FPGA) with very good
performances in the processing capacity [4]. The
reconfigurable logic devices may be used for
repetitive and very much time consuming
operations. Plus, the reconfigurable hardware
provides great flexibility [5].

We used the BF algorithm to obtain the path of a
mobile robot that navigates in a given static
environment. We implemented and optimized the
algorithm both in software and in hardware. We
obtained results which prove that the execution
times of the algorithm in hardware are much better
than in software, using tests on the same
environments.

The paper is structured as follows: section 2
deals with the overall description of BF used
algorithm and its software implementation. Section
3 explains the hardware implementation chosen for
the algorithm and presents the tests and
experimental validation of the hardware
implementation. Section 4 reports the comparative
results obtained in the two implementations, and
section 5 presents conclusions and ideas for future
work.

2 Software Implementation
We used the Breath-First Search Algorithm to
obtain the valid path for a mobile robot that
navigates in a given static and discrete environment.

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 140

2.1 Breath-First Search Algorithm
The BF is a search facility developed in order to
find a path from a certain point to another, in an
environment which can be always a more or less
particular representation of a (Nodes, Vertices)
Graph [3].

The Breath-First is a technique for searching and
returning a path from a given Starting Point to a
given Goal Point. The algorithm guarantees finding
a solution, if there exists one. As for the complexity,
it is a linear algorithm with respect to the number of
considered nodes, while the way it searches is based
on maintaining a queue of all neighbors found to be
accessible through means of vertices until the Goal
is reached. Keeping a similar queue, in which for
each node we keep the one from which our node
was found as neighbor, does the reconstruction of
the path.

We chose to use a typical, bidimensional,
discrete environment, most often represented as a
matrix of squares (cells), and denote the positions of
the cells using the combination of the two
coordinates. This way, the environment presents the
cells as Nodes, and we consider the Vertex to be
represented by the neighbors in the 4 directions (N,
S, W, and E). There is no connection on diagonals
(Fig.1).

Fig.1 Neighbors scheme

The matrix contains free spaces, obstacles, the
Starting Point (S) and Goal Point (G). It is assumed
that the matrix is closed, bordered by obstacles
(Fig.2).

Fig.2 Sample matrix

Given a random map that respects the criteria

mentioned above, a Starting Point and a Goal Point,
the implementation of the Breath-First Search will
return (if there exists) a valid path between the two
points. The path will be marked, assuming that one
can pass only through the free spaces and the
directions of motion are only the ones stated. The
algorithm is presented in Listing 1.

Listing 1. BF Search Algorithm

The reconstruction of the solution is done by
means of a special routine, which takes the list of
previous elements and reconstructs the visited points
of the map (Listing 2).

Listing 2. Reconstruction of path

2.2 Implementation in Software
For the software implementation and experiments,
we have chosen Java as Integrated Development
Environment. The implementation required Object-
Oriented techniques, Graphical User Interface and
Data/Maps saving and exporting, the Java compiler
and emulator [6], and the Eclipse IDE [7].

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 141

The procedure to measure the time interval in
which the algorithm runs was to capture the system
time and to compute the difference of the values
before and after the execution of the algorithm
routine (Listing 3).

Listing 3. Execution time computing

We performed various tests including manually
generated maps, random maps and small to large
maps. We observed that the running time increases
significantly for large maps. Each increase in the
length of an assumed square matrix produces a 2nd

order polynomial increase in the number of cells and
spreading of the algorithm queue (which is the
number of cells included in the queue but that are
not on the path). Results prove very fast times and
very short paths (80% of the times optimal) for
small matrices (Fig.3).

Fig.3 Result of BF Search

For very large dimensions of maps (e.g. 200x200
cells) we could not test the algorithm because the
program required more virtual memory for
processing than the operating system could give it.
This is one of the limitations of the software
implementation, another one being that for even
larger maps (e.g. 1000x1000), the memory is
insufficient even to hold the map data.

Also, a comparison table has been generated,
based on the obtained results. The lower the
spreading is, the shorter the time becomes. The time
is given in milliseconds.

Table 1. Software BF Implementation Results

3 Hardware Implementation
Our hardware-based environment is built upon
Xilinx FPGA core technologies, which is the well-
known developing technology in reconfigurable-
based computing functionalities.

3.1 Hardware environment
For the hardware implementation, we chose from
the FPGA family, a Xilinx Virtex 2Pro Board
(XC2VP30-FF896-6), manufactured by Digilent
Inc. The board is equipped with VGA-output, used
for visualization of test results on the monitor. It
required Xilinx ISE 8.1 Environment [9], which was
used for VHDL code synthesis, implementation and
board programming.

A series of adaptations of the BF algorithm had
to be done, in order to exploit the logic resources of
the Virtex FPGA device. The input matrix is stored
in BlockRAMs. Depending on the space available in
the FPGA device, the process memory can be
implemented inside or outside the chip (in the
Virtex BlockRAMs or in an external dynamic
RAM).

All components have been described in
parameterizable VHDL code. Thus, the design
becomes portable on any hardware support system.

3.1.1 Design of components
The hardware solution is based on a structural
description with component-style design. It uses
interconnected components, each of them
performing a certain task. The most important
component is the BF component, which implements
the algorithm (Fig.4).

Fig.4 BF Component top view

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 142

The signals interact with the required memory
for applying the BF algorithm, while some of the
signals (clock, solve as inputs and ready as output)
are signals that belong to the hardware
configurations and interconnections.

The MarkPath component is the one that
implements the reconstruction of the path after the
algorithm has been applied (Fig.5).

Fig.5 MarkPath Component

In hardware, no values initialization is made
automatically, therefore it is required that before any
algorithm is applied, the system is brought to a
known state, which must be the initial state of the
algorithm. Every signal must be initialized, and the
memory map also. Therefore, we have designed a
component that deals with all these and with other
clock synchronization and enable / ready types of
signals. The component is called CentralUnit
(Fig.6).

Fig.6 Central Unit Component

One of the components required for the
integrated system to work is the CopyMem
component, which reinitializes the matrix for the
algorithm. This matrix will be usable for future
implementation of other algorithms too (Fig.7).

Fig.7 CopyMem Component

All these components are gathered into a larger
one, which is a relatively simple Finite State
Machine (FSM). This component supervises by its 4
states (Standby, Init, BF, and Path) the system’s
tasks.

The VGA module contains the necessary signals
to synchronize the output on a regular monitor, it
captures the value from the matrix and it outputs the
color corresponding to the matrix value (Fig.8).

Fig.8 VGA Component

The block represents the VGA controller that
provides the image on an 800x600 pixels screen
display. It uses a 65 MHz clock and 60 ± 1 Hz
refresh. This block generates the CRT-based HS and
VS timing signals, and the R, G, B video data
signals.

3.1.2 Integrated system design
The architecture of integrated system has been
designed as the collection of components, connected
to each other by signals, and with a few processes
that handle the necessary synchronizations,
command all the components, acquire signals from
board inputs, and send data to outputs (monitor)
(Fig.9).

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 143

Fig.9 Integrated system

3.2 Testing and performance of hardware
implementation

The hardware implementation was tested several
times using different maps, the same that were used
for the software implementation.

The results were photographed after the
algorithm execution.

At the beginning, the report of the Xilinx
synthesis process shows that the system can work at
a maximum frequency of 185 MHz. We also tested
the performances of our hardware implementation
using the testing environment ModelSIM XE III 6.1
from Xilinx [10]. The waveforms generated helped
us in choosing the working. We decided to start
testing at 120 MHz frequency.

The images taken from the hardware
implementation of the BF algorithm present the
obtained map on the monitor. On the map, the path
found and the dispersion are in the left side, and the
directions chosen at each point, are in the right side.
Fig. 10 to 14 show different map dimension used to
verify that the BF algorithm obtains a valid path and
to check how much time is required for that.

Figures prove that the algorithm performs very
well in terms of path optimality, even if the
spreading is almost every time very large.

Table 2 and Table 3 presents samples of
algorithm execution times (in µs) in our hardware
implementation at the 120 MHz and 150 MHz
working frequency.

Fig.10. Result for 10x10 map dimension

Fig.11. Result for 30x30 map dimension

Fig.12. Result for 40x40 map dimension

Fig.13. Result for 50x50 map dimension

Fig.15. Result for 100x100 map dimension

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 144

Table 2. Hardware BF Implementation Results at
120 MHz working frequency

Table 3. Hardware BF Implementation Results at
150 MHz working frequency

The memory available in FPGA Virtex devices
allows the implementations of large matrix (e.g.
100x100). Our maps use variable dimension
matrices. Even for large maps, the FPGA circuit is
used only at a small fraction of its capacity. But a lot
larger maps cannot be stored into the BlockRAMs,
considering the fact that we also need to keep the
map of chosen directions, to be able to reconstruct
the path. For these situations, an external Dynamic
RAM memory can used.

4 Comparison Results
The different results between the two kinds of
implementation appear especially for the run time of
the algorithm. Generally, all of the measured times
were at least two orders of magnitude better in
hardware than in software.

By increasing the working frequency of the
hardware clock, the execution time diminishes
proportionally.

For very small dimension maps the software
implementation is preferable because the time is
small enough and the implementation is easy. For
large dimension maps the hardware one is
preferable because of much better running times.

The memory size used for maps in hardware
implementation can be limited only to the amount of
BlockRAM memory available in the Virtex devices.
If a larger size memory is necessary, it can be
implemented outside the chip, but in this case the
working frequency will obviously be smaller than
now.

The board with FPGA digital device is proper to
use for mobile robot applications. It is now possible
to take over a part of the necessary control system of
the mobile robot skills.

5 Conclusion
Ours results demonstrate that the hardware-level
solution for path-planning algorithms
implementations is much faster and proves to be a
serious alternative to usual software solutions.

The development of such hardware
implementations remains quite difficult because of
the lack of standards and the need to focus on every
single detail of the implementation, normal for such
a low-level approach.

Software implementations though provide
flexible solutions, easy to implement, manage and
maintain, and easy to modify, but much slower.

In our future research, we intend to make
hardware implementations for other known path-
planning algorithms, also based on the agent-
oriented paradigm, and to use them for mobile robot
navigation.

References:
[1] Siegwart, R., and Nourbakhsh, IR. Introduction

to Autonomous Mobile Robots, The MIT Press,
2004.

[2] Arai T., Pagello, E., and Parker, LE. Advances
in Multi-Robot Systems, IEEE Transactions on
Robotics and Automation, Vol.18, No.5, 2002,
pp. 655-661.

[3] Cormen, TH., Leiserson CE., Rivest, RL.
Introduction to Algorithms. The MIT Press and
McGraw-Hill, 1990.

[4] Cret, O., Mathe, Z., Grama, C., Vacariu, L.,
Roman, F., Darabant, A. Solving the Maximum
Subsequence Problem with a Hardware Agents-
based System. WSEAS Transactions on
Circuits and Systems, Vol.5, No.9, 2006, pp.
1470-1478.

[5] Katz, RH., and Borriello G. Contemporary
Logic Design. Benjamin Cunnings/Addison
Wesley Publishing Company, 2005.

[6] The Java API, java.sun.com/reference/api
[7] The Eclipse IDE, www.eclipse.org
[8] Digilent XUP/V2P board documentation,

www.digilentinc.com
[9] The Xilinx ISE 8.1 Environment,

www.xilinx.com/support
[10] ModelSIM XE III, www.model.com

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 145

	1Introduction
	2Software Implementation
	3Hardware Implementation
	4Comparison Results
	5Conclusion

