
Using Metamodeling in order to Evaluate Data Models

ERKI EESSAAR

Department of Informatics

Tallinn University of Technology

Raja 15, 12618 Tallinn

ESTONIA

 http://staff.ttu.ee/~eessaar

Abstract: - A data model (for example, relational or object-relational) specifies data types, types of data

structures, types of operations with data and types of integrity constraints. A database system (DBMS) that

implements a particular data model allows us to create databases to different enterprises. In this paper we

explain, why it is useful to create metamodels of data models. We illustrate the advantages with concrete

examples based on the metamodels of two object-relational data model approaches. The results that are

revealed through the examples are also novel contributions of our work.

Key-Words: - Object-relational data model, SQL, Metamodel, Data types, Language design, Metrics

1 Introduction
Definition: "A data model is an abstract, self-

contained, implementation-independent definition of

elements of a 4-tuple of sets (T, S, O, C) that

together make up the abstract machine with which

database users interact. In this case: T is a set of data

types; S is a set of data structure types; O is a set of

data operation types; C is a set of integrity constraint

types."

Examples of the data models are hierarchical,

network, relational, object-oriented and object-

relational. The names of these models are actually

general names because there are different proposals

about their exact nature.

In this paper we are interested in the object-

relational (OR) data model. There is no common

object-relational data model yet. In this paper we

consider two OR data model approaches:

• The underlying data model of SQL:2003

standard ("ORSQL") [1].

• The data model ("ORTTM") that is described in

The Third Manifesto [2, 3].

The Third Manifesto can be seen as a

compilation of principles of Object-Relational

DBMS that is free from the problems and limitations

of SQL. "Accordingly, we also believe that a true

object/relational system would be nothing more nor

less than a true relational system – which is to say, a

system that supports the relational model, with all

that such support entails." [3]

We call the DBMSs that support ORSQL or

ORTTM as ORDBMSSQL or ORDBMSTTM,

respectively.

Data model (as specified at the beginning of this

section) is a kind of abstract language [4]. One

possibility to describe abstract syntax of a language

is to create metamodel of a language [5]. For

example, abstract syntax of UML is presented as

metamodel [6], which is created by using subset of

UML – class diagrams.

The goal of this paper is to demonstrate that it is

advantageous to create metamodels of data models.

We have created metamodels of ORSQL and ORTTM

data models. We present some of the results that we

have achieved by analyzing these metamodels.

The rest of the paper is organized as follows.

Section 2 lists some of the advantages of creation of

metamodels of data models. Section 3 illustrates

metamodel-based comparison of data models. We

compare parts of ORSQL and ORTTM metamodels that

specify constructed/generated data types. Section 4

presents metrics values that are calculated based on

the metamodels of these two data models. Section 5

describes violations of orthogonality principle in

language design that we discovered by observing

ORSQL metamodel. Section 6 summarizes this

article.

2 The use of Metamodeling in case of

Data Models
Metamodels are widely used in various software

engineering processes. Metamodel is "a model of a

model" that provides "the rules/grammar for the

modelling language (ML) itself." [7]

Some advantages of metamodels of data models:

1. Creation of a metamodel may cause actual

specification of a data model. For example,

there is no clear and compact specification of

"ORSQL data model". Instead, there is huge

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 181

textual specification of SQL database language.

A foundation part of SQL:2003 standard [1] is

1332 pages long. On the other hand, The Third

Manifesto [2, 3] specifies the data model

(ORTTM) in the form of prescriptions,

proscriptions and suggestions. However, it does

not provide visual specification.

2. A metamodel of a data model visualises

underlying concepts of a data model. It is

possible to get overview about a data model

with the help of much more compact document

compared to purely textual specification.

3. If we create a metamodel by using some visual

language (like UML) that is well known to the

software engineering community, then it

facilitates understanding of data models among

many professionals. Maybe it also helps to

improve understanding of data models by the

DBMS vendors and improve current DBMSs.

For example, Eessaar [8] describes some

shortcomings of ORDBMSSQLs that make more

difficult to implement whole-part relationships

in a database.

4. A metamodel can be used for teaching purposes,

in order to give visual overview of the model

constructs and their relationships.

5. It is possible to compare data models:

• by finding mappings and discrepancies between

elements of their metamodels (see section 3).

• by calculating metrics values based on their

metamodels (see section 4) and comparing these

values. It is possible to use existing special tools

like UML Model Measurement Tool [9] in

order to calculate metrics values.

6. A metamodel of a data model could help to

improve a data model and its specification:

• Inspection of visual structures in a metamodel

helps to find violations of the orthogonality

principle by a language (see section 5).

• Creation of a metamodel requires thorough

study of existing specifications and therefore

can help to find incompletenesses,

inconsistencies and other mistakes in them.

3 Metamodel-based Comparison of

Data Models
In this section, we demonstrate that the creation of

metamodels of data models helps to compare the

data models in order to find their similarities and

differences. One possible method for evaluating

information-modeling methods is metamodel-based

comparison [10]. If we have metamodels of data

models, then we can compare data models in the

same way.

Next, we present example of this kind of

comparison. Specification of a data model consists

of specification of data structures, data operators,

data integrity, and data types. We present parts of

metamodels that specify constructed/ generated data

types. We selected this part because existing

research about the object-relational data models

considers possibility to create these types as an

important advantage of the object-relational data

model compared to the relational data model (here

"relational model" is the underlying model of

SQL:1992 or earlier standards). It is possible to use

these types in order to implement whole-part

relationships in a database [8].

Fig. 1 presents part of ORTTM metamodel and

Fig. 2 presents part of ORSQL metamodel. Table 1

contains mappings between the metaclasses that are

shown in these models. There is a mapping between

two metaclasses that belong to the different

metamodels if the underlying constructs of these

metaclasses have semantic equvelance or are at least

semantically quite similar.

Table 1Mapping of ORSQL and ORTTM metaclasses

that belong to package "Data type" and describe

constructed/generated data types

ORSQL metaclass ORTTM metaclass

Collection type Collection type

Collection type

constructor

Collection type generator

Constructed data type Generated type

Data type Type (data type, domain)

Data type constructor

("value constructor")

Type generator

ROW Con TUPLE Gen

Row type Tuple type

Table type Relation type

Not all the metaclasses participate in this

mapping. It shows that there are discrepancies

between ORSQL and ORTTM. One type of discrepancy

is construct deficit. In this case a metamodel element

of one metamodel does not have a corresponding

metamodel element in another metamodel.

Construct deficit in ORTTM: ARRAY Con
(1)
,

Array element
(1)
, Array type

(1)
, MULTISET Con

(1)
,

Multiset element
(1)
, Multiset type

(1)
, REF Con

(3)
,

Reference type
(3)
.

(1)
- Date and Darwen [3] permitted ARRAY and

SET type generators but more lately they have come

to the conclusion that these type generators and

corresponding types are unnecessary [2].
(3)
 -

Authors of ORTTM argue explicitly against pointers.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 182

«singleton»

TUPLE Gen

Tuple type

0..*

1

Type

-subtype

0..*

-supertype 0..*

«singleton»

RELATION Gen

Relation type

0..*

1

«singleton»

Collection type generator

Type generatorGenerated type

-name : String

Data operators::Operator

Fig. 1 Data type generators in ORTTM

Constructed data type

Data type constructor

0..* 1

«singleton»

ARRAY Con

«singleton»

MULTISET Con

«singleton»

REF Con

«singleton»

ROW Con

Row type

Collection type

-supertype0..*

-subtype

0..*

-max_cardinality : Int

Array type

Multiset type

-ordinal_position : Int

Array element

1

0..*

Reference type

0..* 1

0..*
1

0..*

1

Data type

-element type

1

0..*

{disjoint,

complete}

{disjoint,

complete}

{disjoint, complete}

Collection type constructor

Multiset element

-element type

1

0..*

1

0..*

-element type1

0..*

Table type

1
0..1

Fig. 2 Data type constructors in ORSQL

Construct deficit in ORSQL: RELATION Gen.

ORTTM requires that an ORDBMSTTM must

support two type generators that allow creation of

non-scalar types – TUPLE and RELATION (see

Fig. 1). ORSQL specifies four type constructors –

REF, ROW, ARRAY and MULTISET (see Fig. 2).

Fields of a constructer row type are left-to-right

ordered in ORSQL. If we change the order of fields in

the declaration of a row type, then this declaration

specifies a new type. On the other hand, attributes of

a generated tuple type are not left-to-right ordered in

ORTTM. A value of a constructed array type in ORSQL

is an ordered collection of elements. A value of a

constructed multiset type in ORSQL is an unordered

collection of elements. All the elements in a

collection must have the same type (see Fig. 2).

These collections can contain repeating elements.

A value of a generated relation type in ORTTM is

an unordered set of tuples each of which has the

same tuple type. This set cannot contain repeating

elements (tuples). ORSQL uses the concept "table

type" in the context of table functions. The wording

"<returns type>::= <returns data type> [<result

cast>] | <returns table type>" [1, p. 676] gives an

impression that a table type is not a data type.

However, an invoked table function returns a value

that has a type ROW (...) MULTISET (multiset of

rows). Mapping of "table type" and "relation type"

(see Table 1) is disputable. We cannot use a "table

type" (as described by [1, p. 676]) as declared type

of a column in ORSQL. However, we can create a

column with a type ROW(...) MULTISET.

Reference type, that is a kind of constructed data

type, is used together with the typed tables in ORSQL.

ORSQL allows us to create typed tables based on the

user-defined structured types. The row type of a

typed table is derived from a structured type. A

typed table is a referenceable table. "A REF value is

a value that references a row in a referenceable

table." [1, p. 43]. A reference type is a set of REF

values that reference rows in the typed tables that

are defined based on a structured type. These values

are like Object ID-s in object systems that "are

addresses – at least conceptually – and are hidden

from the user" [4, p. 826]. Such state of the affairs is

caused by the view of SQL creators that the object-

oriented concepts "class" (or type) and "instance"

are the counterparts of the database concepts "table"

and "row", respectively. ORTTM, on the other hand,

advocates that the counterpart of the concept "class"

is concept "data type".

As you can see, metamodel-based comparison

provides the framework that allows us to discuss the

similarities and differences of data models.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 183

4 Metrics Values
Rossi and Brinkkemper [11] propose a set of

metrics. Their values are calculated based on the

metamodels and they help to compare complexity of

system development methods and techniques. It is

also possible to use these metrics in case of the data

models if their metamodels are available.

Table 2 presents values of three types of metrics

– (1) number of metaclasses, (2) number of

attributes of the metaclasses, and (3) sum of these

values. These metrics values are calculated for

ORSQL and ORTTM in general (row ∑) and also for

the subsections of these data models. For the

comparison purposes we also present the metrics

values for the underlying data model of SQL:1992

(without the extensions that were added by

Persistent Stored Modules - 96 specification).

In case of these metrics, bigger values mean

bigger complexity. However, Rossi and Brinkemper

[11] write about them: "the metrics by themselves

cannot be used to judge the “goodness” or the

appropriateness for the task of the method" and

should be used together with other comparison

methods (like for example the one that is presented

in section 3).

The underlying data model of SQL:1992 has

smaller metrics values as compared to ORSQL and

ORTTM. In this case, smaller metrics values (and

complexity) are caused by the lack of many

important features. It actually makes creation of

applications that use a database more difficult. It

means repositioning complexity within the system

because more work has to be done by the

application. The work of Eessaar [8] contains

literature-based overview of problems of the

underlying data model of SQL:1992 or earlier SQL

standards. ORSQL and ORTTM data models try to

solve many of the referenced problems.

Metrics values of ORSQL are bigger than metrics

values of ORTTM. The amount of metaclasses in

ORSQL and ORTTM data model metamodels is quite

similar. However, the metaclasses of ORSQL

metamodel have much more attributes compared to

ORTTM metamodel. Bigger amount of attributes

indicates that a database designer who designs

database based on ORSQL has more opportunities to

"tune" the database objects, compared to ORTTM. It

also points to the bigger complexity of ORSQL

compared to ORTTM.

In this case, smaller metrics values of ORTTM

compared to ORSQL do not mean that ORSQL is

"better".

Firstly, analysis of similarities and discrepancies

of ORSQL and ORTTM (part of it is presented in

section 3) shows that despite the lack of some

constructs in ORTTM (for example, typed tables,

reference types, triggers) it is still possible to use an

ORDBMSTTM in the cases that require the use of

these constructs in an ORDBMSSQL. We just have to

use some ORTTM construct (that may have

corresponding construct in ORSQL) in a way that is

not possible in an ORDBMSSQL. For example, in

ORDBMSSQLs we often have to use triggers in order

to enforce complex data integrity rules that refer to

more than one table. In an ORDBMSTTM we can use

declarative database constraints for the same

purpose.

In addition, ORSQL violates orthogonality

principle (see section 5).

5 Orthogonality Principle in Language

Design
Date and Darwen [3, p. 505] explain that a

programming language that displays orthogonality

provides "(a) a comparatively small set of primitive

constructs together with (b) a consistent rules for

putting those constructs together, and (c) every

possible combination of those constructs is both

legal and meaningful (in other words, a deliberate

attempt has been made to avoid arbitrary

restrictions)." [3, p. 505] [Italics added by author] It

is also true in case of abstract programming

languages like data models.

An advantage of ORTTM compared to ORSQL is

that ORTTM is based on the small set of core

concepts that makes the model much easier to

understand (see requirement (a) of orthogonality).

Unlike ORSQL, ORTTM uses the concepts "variable"

and "operator" as a basis of specification of its data

structures and data operators, respectively. Some of

the concepts are metaphors that help to make a data

model easier to understand to people with a

programming background. Examples of such

concepts are "variable" and "assignment operator".

Rittgen [12] recommends to use metaphors in the

software engineering in order to make a particular

topic more understandable because "they resort to

knowledge that is rooted in common sense and

therefore shared by everybody." [12, p. 434]

Date and Darwen [3] illustrate SQL violations of

orthogonality principle with the non-exhaustive list

of examples. Their examples are about the

requirement (c) of orthogonality.

We found additional examples. We present

problem in ORSQL as well as comments about the

state of affairs in ORTTM.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 184

Table 2 Metrics values - number of metaclasses, number of their attributes and sum of these

values

Subsection of a data model metamodel SQL:1992 ORSQL ORTTM

Data types 10+10=20 38+21=59 27+4=31

Data structures 18+12=30 26+17=43 17+4=21

Data integrity 13+11=24 16+21=37 9+5=14

Data operators 8+2=10 27+32=59 42+5=47

Metaclasses that we cannot classify and their attributes 3+3=6 3+3=6 -

Metrics values for a data model in general (∑) 52+38=90 110+94=204 95+18=113

1. Attributes, fields and columns are structural

components but only a column can be associated

with a domain.

ORTTM: ORTTM does not use the constructs field,

column and domain. An attribute of a relational

variable (relvar) can have a type that is either a

built-in or user-defined scalar type or a

generated type.

2. It is not possible to declare a default value to a

field of a row type but it is possible in case of

other structural components – attributes and

columns.

3. Both base tables and viewed tables (views) have

columns. However, it is not possible to declare a

default value to a column of a view. Together

with updateable views, it could allow us to

record different default values in a column of a

base table in the different situations.

ORTTM (problems 2-3): A relvar (base or virtual)

attribute can have a default value [3, p. 202].

4. It is possible to use generated columns but not

generated attributes or fields.

5. Attributes, fields and columns are structural

components. However, it is possible to use

generated columns but not generated attributes

or fields.

ORTTM (problems 4-5): A default value of a

relvar attribute can be found by using some

expression. It can refer to system functions.

6. A domain can be associated with a predefined

data type but not with a user-defined or

constructed type.

ORTTM: ORTTM uses the concepts domain and

type as synonyms. Attributes that are in the

heading of a relation or a tuple type or

components of a possible representation of a

scalar type can have any type.

7. A base table or a view cannot contain two or

more columns with the same name in ORSQL.

However, a derived table that is derived directly

or indirectly from one or more other tables by

the evaluation of a query expression can contain

more than one column with the same name.

ORTTM: It does not allow two or more attributes

with the same name in a relvar, in a relation or

in the heading of a relation or tuple type.

8. Table constraints can only be explicitly

associated with base tables but not with views.

Here explicit association means that constraint

specification is part of a table specification.

ORTTM: ORTTM does not distinguish base and

virtual relvars in this regard. For example,

candidate key and foreign key specifications

could be part of specification of a base or a

virtual relvar.

9. It is possible to create temporary base tables but

not temporary views.

ORTTM: It specifies private application relvars

that correspond to declared local temporary

tables in ORSQL and public application relvars

that are kind of virtual relvars.

10. It is possible to create a typed table based on a
user-defined structured type but not based on a

distinct type.

11. Each typed table must have exactly one self-

referencing column. If this typed table is a typed

base table, then this column has an implicit

uniqueness constraint. On the other hand, ORSQL

permits not-typed base tables, which do not have

any associated (explicitly or implicitly defined)

uniqueness constraint.

12. A self-referencing column in a typed table

cannot be updated.

ORTTM (problems 10-12): ORTTM does not

support typed tables. However, each base relvar

must have at least one explicitly defined

candidate key. All attributes of relvars are

updatable.

13. A subject table of a trigger can only be a
persistent base table. It cannot be a view or a

temporary base table.

14. We can use triggers and declarative constraints

in order to implement integrity rules. It is

possible to defer checking of a declarative

constraint (but not execution of a trigger

procedure) until the end of a transaction.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 185

ORTTM (problems 13-14): ORTTM does not

specify triggers. ORDBMSTTM performs constraint

checking at the end of each update (assignment)

operation. However, ORTTM permits multiple

assignment operations that allow us to assign a value

to more than one relvar as an atomic operation.

A data model evolves over time, some

orthogonality violations disappear but others come

into existence. For example, Date and Darwen [3, p.

436] note based on SQL:1999 that only the

surrogate column of a typed base table can use

"VALUES ARE SYSTEM GENERATED" option.

However, SQL:2003 allows us to use identity

columns in the base tables that are not typed.

How is this topic associated with metamodels? If

a metamodel contains a generalization relationship

between metaclasses (see Fig. 3) so that some

attributes and/or relationships are at the superclass

level and some are at the subclass level, then it could

be a sign of a possible violation of requirement (c).

For example, in case of problem (10) we could

replace the letters in the figure in the following way:

A – User-defined type, B – Structured type, C –

Distinct type, D – Typed table.

-c

-d

B

-e

C

-a

-b

A

-f

-g

D

E

Fig. 3 Constructs in a metamodel that

identify possible violation of the

orthogonality principle

6 Conclusions
In this paper we explained why it is advantageous to

create metamodel of a data model. We demonstrated

that a metamodel could be used in order to find

similarities and differences with other data models.

It could also be used in order to calculate metrics

values. These values are useful if we know metrics

values of other data models as well. In this case they

show relative complexity of each model. Inspection

of a metamodel helps to find possible violations of

orthogonality principle in language design.

We evaluated two approaches of object-

relational data model based on their metamodels.

We found that the underlying data model of

SQL:2003 (ORSQL) is more complex than the

underlying data model of The Third Manifesto but it

does not mean that the former is "better". For

example, ORSQL has many violations of

orthogonality principle. We presented 14 violations.

Participation in the conference was supported by

the Estonian Information Technology Foundation

(by the Nations Support Program for the ICT in

Higher Education "Tiger University").

References:

[1] Melton J, ISO/IEC 9075-2:2003 (E) Information

technology — Database languages — SQL —

Part 2: Foundation (SQL/Foundation), August,

2003. Retrieved December 26, 2004, from

http://www.wiscorp.com/SQLStandards.html

[2] Date CJ, Darwen H, Databases, Types and the

Relational Model, 3rd edn., Addison Wesley,

2006

[3] Date CJ, Darwen H, Foundation for Future

Database Systems: The Third Manifesto, 2
nd

edn., Addison-Wesley, 2000

[4] Date CJ, An Introduction to Database Systems,

8
th
 edn., Pearson/Addison Wesley, 2003

[5] Greenfield J, Short K, Cook S, Kent S,

Software Factories: Assembling Applications

with Patterns, Models, Frameworks, and Tools,

Wiley Publishing, Inc, 2004.

[6] OMG UML 2.0 Superstructure Specification,

formal/05-07-04

[7] Henderson-Sellers B, Atkinson C, Kühne T,

Gonzalez-Perez C, Understanding Meta-

modelling, Tutorial in 22nd International

Conference on Conceptual Modeling ER2003,

15 October 2003. Retrieved November 20, 2004

from http://www.er.byu.edu/er2003/slides/

ER2003T1HendersonSellers.pdf

[8] Eessaar E, Relational and Object-Relational

Database Management Systems as Platforms for

Managing Software Engineering Artifacts, Ph.D.

thesis, Tallinn University of Technology, 2006.

Available at http://digi.lib.ttu.ee/i/?85

 [9] Lavazza L, Agostini A, Automated

Measurement of UML Models: an open toolset

approach, Journal of Object Technology, Vol. 4,

No. 4, May-June 2005

[10] Siau K, Rossi M, Evaluation of Information

Modeling Methods -- A Review, In: Proc. of the

31st Annual Hawaii Int. Conf. on System

Sciences, Vol. 5, 1998, p. 314.

[11] Rossi M, Brinkkemper S, Complexity

Metrics for Systems Development Methods and

Techniques, Information Systems, Vol. 21, No. 2,

1996, pp. 209-227.

[12] Rittgen P, Translating Metaphors into Design

Patterns, Advances in Information Systems

Development, Vol. 1, Springer, 2006 pp. 425-

436.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 186

