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Av. Rovisco Pais, 1049-001 Lisbon

PORTUGAL
afred@lx.it.pt

Abstract: Wrapper feature selection methods are typically used in multi-class classification problems to determine
which feature subspace maximizes the patterns discriminative potential, with respect to the global multi-class
scope. However, in most classification tasks, some classes are more easily discriminated than others due to par-
ticularly predictive features. Thus the global class set may stand as a hard restriction when performing feature
selection. We propose a class pairwise approach, in which the wrapper feature selection framework is applied
with the purpose of determining the feature subspaces with higher discriminative potential for each class pair. This
method is shown to provide simpler models, reduced number of features, higher scalability, and in some cases even
improve the classification performance.
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1 Introduction
In pattern classification systems each pattern is usu-
ally represented as a feature vector consisting of prop-
erties, singularities, or measurements [10, 5]. These
can often reach dozens or even hundreds, however not
all of the available features may be relevant. Some can
be redundant, some can be completely irrelevant, and
some can even be misleading. As a result, an initial
step in pattern analysis is to determine relevant fea-
tures for the problem at hand, or determining better,
alternative representations of the patterns [19]. The
motivations can emerge from different purposes [8],
among which the most common are:

(a) dimensionality reduction;

(b) improvement of predictive performance;

(c) facilitate data visualization and understanding.

This task is normally addressed either through
feature selection or feature extraction. Feature selec-
tion (or reduction) techniques use variable ranking cri-
teria’s (filter methods) [6, 2], or the predictive perfor-
mance of a learning machine (wrapper or embedded
methods) [11] to select higher performance individual
or groups of features from the original space. Feature
extraction techniques use transformations of the orig-
inal feature space, in order to extract relevant cross-
feature information [20, 4]. In this paper we will be
focusing on feature selection techniques, although the

same base concepts can also be extended to feature
extraction.

Numerous methodologies have been exploited
over the years to tackle the feature selection prob-
lem [11, 12, 6], with different characteristics in terms
of search strategy, and subspace evaluation criteria,
among others [1, 9]. Typically, feature selection is
performed by searching the global multi-class scope
of known patterns using a chosen strategy. The pur-
pose is to determine the subspace of features, consid-
ered to be the best according to a specified feature sub-
space evaluation criteria, and which will subsequently
be used for pattern classification.

Generally, in multi-class classification tasks some
classes are more difficult to classify than others due
to the lack of good predictive features for that class
[7]. Thus the global multi-class scope may stand as
a hard restriction, in the sense that the elected sub-
space of features is the one which optimizes the evalu-
ation criteria on data belonging to all the classes. Sub-
spaces resulting from this approach have to be elab-
orate enough to fit the whole set of classes, and the
search can be misguided in complex class sets. Fur-
thermore, when new classes are added to the origi-
nal set, there is no guarantee that the previously deter-
mined subspaces remains adequate. Thus it becomes
necessary to re-compute new feature subspaces for the
new global multi-class scope.

In [7] this problem is explored, and a method is
proposed in which a filter feature selection framework
[11], is used to determine for each individual class
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which feature subspace better discriminates it from
the remaining classes (one-vs-all approach). In this
paper we propose to perform feature selection based
on class pairwise feature selection and classification
in the context of wrapper methods. We show that
by using only pairs of classes rather than the global
multi-class scope as a search base, we get a better in-
sight into the underlying data models, and promote
pattern classification system scalability, while retain-
ing its predictive accuracy.

The rest of the paper is organized as follows. Sec-
tion 2 presents the class pairwise feature selection ap-
proach. Section 3 presents experimental results of the
class pairwise approach with a sequential space state
search wrapper method. Finally, Section 4 summa-
rizes results and main conclusions.

2 Class Pairwise Feature Selection
2.1 Motivation
Let X denote a m×n matrix of m patterns and n fea-
tures belonging to W = {w1, ..., wk} classes. Each
pattern xi (1 ≤ i ≤ m), is a feature vector of the form
xi = [f1xi

, ..., fnxi
] belonging to class wxi ∈ W .

From the known set of patterns X , the common ap-
proach for feature selection consists of conducting the
search on the full class set W , in order to determine
the feature subspace with higher discriminative poten-
tial.

Employing a search strategy S with the purpose
of selecting relevant features from the initial feature
space F = [f1, ..., fn] would identify the subspace
F ∗ computed as the best given the feature subspace
evaluation criteria J . Considering all classes W , and
despite the adopted framework being wrapper or fil-
ter, what J ranks is how well a given subspace fits the
global multi-class scope of known patterns. Although
with lower dimension than F , the selected subspace
F ∗ (and consequently built models), is determined in-
herently regarding how well patterns from all classes
W are distinguished, when represented through F ∗.
Our hypothesis is that even lower dimensional sub-
spaces (and consequently less complex models), can
be obtained if the search is performed only on subsets
of W rather than the global scope.

Additionally, determining the best subspace from
the global multi-class scope W imposes that, when-
ever a new class wk+1 is added to the problem, the
best subspace is re-determined for the new multi-class
scope W ∪ {wk+1}1. This results from the fact that a
feature subspace F ∗ evaluated as the best for a set W

1the same applies to the case where a class wk ∈ W is re-
moved

of classes, is not guaranteed to remain the best, nor to
perform as well on W ∪ {wk+1} classes without ex-
ploration of the new global multi-class scope [3]. For
the same reason, heuristic methods of determining a
suitable subspace for the new set, such as using previ-
ously rejected or unused features [2] to update F ∗, are
not guaranteed to produce adequate results. If subsets
of W are used to perform the search, adaptation of the
pattern classification system to new classes becomes
more flexible.

In the next section we describe a method of fea-
ture selection that works by determining relevant fea-
ture subspaces only for subsets of classes, rather than
for the global multi-class scope.

2.2 Search Procedure and Classification
In terms of feature selection, in a multi-class prob-
lem the most elementary subset containing sufficient
information to discriminate between classes, possi-
ble to construct from an initial set W of k classes, is
composed by two elements (the unitary class set only
provides individual description information [16, 18]).
Thus, instead of performing feature selection using
the global class set, we propose to use these elemen-
tary two class subsets (hence the term class pairwise
feature selection) and search for the best feature sub-
space for each pair.

Algorithm 1 lists the generic class pairwise fea-
ture selection algorithm. As inputs we have a set of X
patterns, belonging to a set W of k classes, a search
strategy S, and a feature subspace evaluation crite-
ria J . From W , every possible distinct pair {wa, wb}
(1 ≤ a, b ≤ k ∧ a 6= b) of classes is formed. For each
class pair {wa, wb}, we compute the best feature sub-
space by applying the search strategy S considering
only the patterns xi ∈ X , for which the correspond-
ing class wxi belongs to the pair (wxi ∈ {wa, wb}).
J is used as subspace evaluation criteria in the search
strategy. As a result k(k − 1)/2 differentiated fea-
ture subspaces F ∗

{wa,wb} are produced, corresponding
to the individual subspaces computed as the best for
each class pair. This approach is more demanding in
terms of spatial representation, however the tradeoff
comes from model simplification, and scalability of
the pattern classification system, as discussed subse-
quently.

By reducing the abstraction level in which the
data set is analyzed to only two classes with class
pairwise feature selection, the ability to use a single
classifier is lost. Instead, the classification depends
on individual decisions produced from each class pair
using the corresponding feature subspace. There are
several strategies to address the problem of combin-
ing decisions from multiple classifiers in multi-class
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Algorithm 1 Generic class pairwise feature selection
algorithm.
Require:

X - labeled data set
W - class set
S - search strategy
J - subspace evaluation criteria

Ensure:
F ∗ - set feature subspaces

for {wa, wb} ∈ W : a 6= b do
D = {xi ∈ X : wxi ∈ {wa, wb}}
F ∗
{wa,wb} = S(D, J)

end for

classification [5]. For class pairwise feature selection
we propose majority voting of decisions of individual
classifiers [13], which was shown to hold effective-
ness in class pairwise classification, when compared
to probabilistic approaches [17]. Each individual clas-
sifier votes the class to which a pattern is most likely
to belong, and the assigned class is the one most indi-
vidual classifiers vote for.

2.3 Model Simplification
Consider Figure 1(a) showing a data set with four
classes W = {w1, ..., w4}, where each class is mod-
eled by a gaussian distribution. Patterns from each
class are represented in a 3-dimensional feature space
F = [f1, f2, f3]. No projection to a lower dimen-
sional space provides adequate multi-class separabil-
ity, since every 2-dimensional projection overlaps two
classes (Figures 1(b)-1(d)), and every 1-dimensional
projection overlaps three classes.

To properly address this problem by searching the
global multi-class set W , it would be necessary to
consider the full space F in order to obtain adequate
class separability. With class pairwise feature selec-
tion however, a single feature is sufficient to separate
between each class pair. The initial space F of three
features is therefore modeled by six simpler individ-
ual spaces with only a single feature. From Figure
1 we can see that by class pairwise feature selection:
F ∗
{w4,w1} = [f3], F ∗

{w2,w1} = F ∗
{w2,w4} = [f2], and

F ∗
{w3,w1} = F ∗

{w3,w2} = F ∗
{w3,w4} = [f1]. Simpler

feature spaces facilitate data visualization and under-
standing, which are two of the purposes of feature
selection [8], and in some domains can also provide
classification improvements.

These benefits become more relevant when the ra-
tio between the number of features and the number of
classes is higher. Depending on the strategy, the com-

Table 1: Dataset characterization.
database classes features patterns

Wine Recognition 3 13 178
Yeast Cell Cycle 5 17 384

Iris 3 34 351
SAT 6 36 2000

plexity of the domain can misguide the search [14].
By performing a search only on portions of the class
domain rather than on the global multi-class scope,
like in class pairwise feature selection, problems aris-
ing from the structure of the feature domain, like the
lack of predictive features for a particular class, have a
lesser impact on the search results improving the pat-
tern classification system performance.

2.4 System Scalability
Scalability of the pattern recognition system is another
benefit of class pairwise feature selection. In bench-
mark scenarios or non/slow evolutive domains, fea-
ture selection can be performed only once since the
need to adapt the resulting feature space to changes
in the initial domain is not likely to emerge. However
real world domains are evolutive by nature, and some-
times highly mutable in terms of class set expansion
or reduction.

If feature selection is performed using the global
multi-class scope of classes W , when a new class
wk+1 is added the system must be retrained on the new
global multi-class scope W ∪ {wk+1}. Without ex-
ploring the state space for the new set of classes, there
is no guarantee that the subspace of features learned
for W will hold, nor that it remains the one with bet-
ter performance for pattern classification. Some of the
discarded features can be important, and some of the
previously selected features may no longer be useful.
This is what forces the feature subspace used by the
pattern classification system to be retrained as new
classes are added.

In class pairwise feature selection adaptation of
the pattern recognition system is incremental. Since
the search is performed using only pairs of classes, the
adaptation to a new class wk+1 consists on determin-
ing the individual subspaces F ∗

{wa,wk+1} (1 ≤ a ≤ k)
that best describe all the pairs containing the new and
each of the already existing classes.

3 Experimental Results
As listed in Algorithm 1 the class pairwise search con-
sists in determining for each pair of classes which sub-
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Figure 1: Illustration of a four classes and three features gaussian problem in which benefits can arise by using
class pairwise feature selection. Class labeling is as follows: ◦ − w1; 2− w2; ♦− w3; ∇− w4

space of features performs best. There are several al-
gorithms which can be used for feature subspace se-
lection [12]; for simplicity we used wrapper sequen-
tial forward search. This method starts from an ini-
tially empty space F ∗ = []; in each iteration F ∗ is
updated by selecting the subspace with better criteria
value J∗, from all subspaces formed by the currently
best subspace F ∗, and each of remaining available
features, until convergence. The criteria in a wrap-
per framework is the predictive accuracy of a classi-
fier, for which we used the k-nearest neighbor, and
the naive Bayes, being the classifier used during fea-
ture selection the same used for classification.

We evaluated the class pairwise feature selection
algorithm on two real world sets of small size (n < 20
features), and two of medium size (20 ≤ n < 50 fea-
tures) characterized in Table 3. All sets were prepro-
cessed to ensure the removal of patterns containing
missing values, and nominal values were converted
to discrete numerical values. After preprocessing the
sets were split into a first set of training data and a
second set of test data, each set exclusively contain-
ing 50% of the available patterns (randomly selected).
In the feature selection phase we used the first set to
select the individual feature subspaces for each class
pair, and the second set to evaluate the classifier per-
formance. In the classification phase we used the sec-
ond set to train each individual classifier on its com-

puted subspace, and the first set to evaluate the overall
performance of the method. It is important to enhance
that this way, although only two sets are used, the clas-
sifier performance is always assessed with data which
is unknown to the classifier, that is, not using during
its training. Since differentiated feature subspaces are
produced, the assigned class depends on individual
decisions computed for each class pair. For this pur-
pose, we employ majority voting as described in sec-
tion 2.2, in which individual classifiers vote the class
to which a pattern is most likely to belong. The as-
signed class is the one the majority of individual clas-
sifiers vote for.

Tables 2 and 3 list the mean classification error,
and mean subspace size, respectively for global multi-
class scope and class pairwise feature selection, com-
puted over 50 runs using the procedure as described
before. Bracketed values are the corresponding stan-
dard deviations.

From the results it is easily noticeable that class
pairwise feature selection consistently reduces the
number of necessary features by a factor of roughly
2 : 1 when compared to the results obtained by us-
ing the global multi-class scope for all datasets, as we
can see in Table 3. This confirms what was stated
in Section 2.3 regarding the achievement of simpler
models. As we can see in Table 2, results revealed im-
provements of the classification performance for the
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Table 2: Mean classification error.
global multi-class feature selection

wine yeast iris sat
1-nn 10.00 29.20 6.21 13.00

(6.29) (3.02) (3.16) (0.73)
3-nn 8.71 28.00 4.99 13.10

(3.52) (2.46) (1.92) (0.89)
bayes 3.69 27.80 3.92 14.80

(2.59) (2.65) (2.13) (0.96)
pairwise multi-class feature selection

wine yeast iris sat
1-nn 9.24 27.50 6.35 12.70

(2.73) (2.45) (3.15) (0.82)
3-nn 7.87 25.90 4.96 13.20

(2.25) (2.85) (1.83) (0.78)
bayes 5.80 26.70 3.97 15.00

(3.07) (2.52) (2.01) (0.86)

Yeast Cell Cycle data set for all classifiers, and the
Wine data set for the k-nearest neighbor type classi-
fiers. In the remaining cases slightly worse classifi-
cation performance was obtained, although within the
confidence interval bounds. Naive Bayes, when used
as classifier on the Wine data set, was the case where
results have degraded more. Also interesting to an-
alyze is the refinement of the standard deviation ob-
tained for both the mean classification error, and mean
feature subspace size: class pairwise feature selection
leads in general to reduced variability.

4 Conclusions
We described the application of class pairwise test-
ing and decision to the problem of feature selection,
pointing the main benefits and drawbacks of such ap-
proach.

As seen, the main benefits arise from the fact that
simpler models can be achieved through this method
(due to the reduction of the number of features), and
easier adaptation mechanisms can be employed when
new classes are added, by simple training of pairwise
associations with the new classes, as opposed to the
global multi-class approach which requires total re-
training of the pattern recognition system involving all
the class.

Experimental results not only proved that class
pairwise feature selection decreases the number of
necessary features, thus permitting more amenable
models, with additional insight into the differentiat-
ing features, while achieving comparable or even im-

Table 3: Mean subspace size.
global multi-class feature selection

wine yeast iris sat
1-nn 4.46 10.20 2.20 22.70

(1.40) (2.70) (0.81) (4.66)
3-nn 4.70 10.20 2.18 19.10

(1.93) (2.73) (1.00) (4.33)
bayes 6.26 8.02 2.48 10.10

(1.94) (2.07) (0.89) (2.89)
pairwise multi-class feature selection

wine yeast iris sat
1-nn 2.23 5.25 1.40 9.42

(0.71) (0.76) (0.27) (1.09)
3-nn 1.89 4.68 1.39 8.98

(0.49) (0.77) (0.34) (1.14)
bayes 3.01 4.32 1.49 7.42

(0.87) (0.70) (0.31) (0.99)

proved classification accuracy.
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