
Conformity analysis with structured query language

INNAR LIIV, REIN KUUSIK, LEO VÕHANDU
Department of Informatics

Tallinn University of Technology
15 Raja Street, 12618 Tallinn

ESTONIA

Abstract: - The paradigm shift from hypothesis-driven to data-driven exploratory data analysis methods has
been gaining acceptance in several emerging research areas as self-organization, machine learning, data
mining and bioinformatics. In this paper, a compact overview of such data-driven method is given with short
discussion about some properties and implementation issues and an implementation with structured query
language is presented. One could make use of database capabilities, thereby leveraging on more than a decade
of effort spent in making these systems robust, portable, scalable and concurrent.

Key-Words: - conformity analysis, sql, data mining, outlier detection, knowledge discovery from databases

1 Introduction
The method of conformity analysis was initially
presented in [1],[2],[3],[4]. The main goal of the
analysis is to perform data reorganization for the
input in order to align them according to specific
property - conformity. In most cases, the rows (will
be referred as objects in this paper) in databases are
in the arbitrary order of insertion and attributes
according to the initial design of the database.
Therefore, simple glance at the database will not
give much information or insights about the data, its
natural organization, behaviour and evolution.
However, all the research areas currently imploying
classification and clustering, notice several
fundamental fallacies of the methods - it is virutally
impossible to describe the transformation between
the classes and clusters. As the boundaries are
usually fuzzy, the observations near the edges of the
classes tend to possess a lot of information that
would be valuable for the whole model. Conformity
analysis aligns the objects and attributes according
to nearest-neighbour similarity and therefore
establishes a scale of typicality in the data. It is
related to the field of outlier detection, which has
important applications in the field of fraud detection,
network robustness analysis and intrusion detection
(review of literature and research issues in outlier
detection available at [5]).
 In this paper, a compact overview of the method
is given (in section 2) and an implementation with
structured query language is presented and discussed
(in section 3), followed by the conclusion.

2 Conformity analysis
The algorithm for conformity analysis is presented
in figure 1.
Objects:
1. Enumeration of the attribute values for
each attribute;
2. Replacement of attribute values with the
actual frequency of that value within that
attribute;
3. Conformity for objects is calculated
using the sum of attribute value
frequences;
Attributes:
4. Enumeration of the attribute values for
each object;
5. Replacement of attribute values with the
actual frequency of that value within that
object;
6. Conformity for attributes is calculated
using the sum of attribute value
frequences.

Figure 1. Algorithm for conformity analysis

Let us look at the following numerical example.
Table 1 is the initial dataset before any data
manipulations and calculations. After calculating the
conformity weights for the objects and attributes
according to the presented algorithm, we reorder the
elements to get the result presented in Table 2.
Initially the algorithm has being used for reordering
the data table ([1],[2]), but the measure of
conformity itself enables to gain insight to the object
(customer) behaviour real-time as the data changes
and allows the company to tailor their strategies to
make the relationship mutually more valuable.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 187

TABLE 1
INITIAL DATASET

 a1 a2 a3 a4 a5

O1 1 0 0 0 0

O2 0 1 0 1 1

O3 0 1 0 1 1

O4 1 1 0 1 0

O5 0 0 1 0 1

O6 0 1 1 1 1

TABLE 2
DATASET AFTER CONFORMITY ANALYSIS

 a2 a4 a5 a3 a1

conform
ity

O2 1 1 1 0 0 20

O3 1 1 1 0 0 20

O6 1 1 1 1 0 18

O4 1 1 0 0 1 16

O5 0 0 1 1 0 14

O1 0 0 0 0 1 12

conformity 20 20 18 16 12

3 Implementation with SQL
If we think about the steps in the algorithm, we can
identify mostly enumeration, replacements and
sorting. The idea of this paper is to delegate all the
calculation steps to the database systems. One could
make use of database capabilities, thereby
leveraging on more than a decade of effort spent in
making these systems robust, portable, scalable and
concurrent. Also it is possible to exploit the
underlying SQL parallelization.
 Table with the initial data in SQL format (same
data as the previous examples) is presented in
figure 2.
 Presented SQL query (in figure 3) is compatible
with the following database systems:

• MySQL 4.1.1-alpha-standard;
• Microsoft SQL Server 2000;
• Microsoft Access 2000;
• PostgreSQL Database Server 8.1.0;
• Oracle 10g.

 Notable effort was needed for making the query
compatible with the listed systems, as the
development of the nested subquery functionality
has been different for each of the systems.

 The results of the query are presented in figure 4.
Future work should include several optimizations
with the indices and scalability experiments.

CREATE TABLE DATA_TABLE (o int, a int, v int);

INSERT INTO DATA_TABLE (o,a,v) VALUES ('1', '1', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('1', '2', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('1', '3', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('1', '4', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('1', '5', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('2', '1', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('2', '2', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('2', '3', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('2', '4', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('2', '5', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('3', '1', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('3', '2', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('3', '3', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('3', '4', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('3', '5', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('4', '1', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('4', '2', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('4', '3', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('4', '4', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('4', '5', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('5', '1', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('5', '2', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('5', '3', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('5', '4', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('5', '5', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('6', '1', '0');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('6', '2', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('6', '3', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('6', '4', '1');

INSERT INTO DATA_TABLE (o,a,v) VALUES ('6', '5', '1');

Figure 2. Table and the initial data

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 188

SELECT tmp_o_sum.o, tmp_a_sum.a, DATA_TABLE.v, tmp_o_sum.tmp_o_sum as o_sum, tmp_a_sum.tmp_a_sum as
a_sum
FROM ((SELECT tmp_frequency.o, Sum(tmp_frequency.ver) AS tmp_o_sum
FROM (SELECT DATA_TABLE.o, DATA_TABLE.a, tmp_freq_v.s AS ver, tmp_freq_h.s AS hor
FROM (SELECT o, v, count(*) AS s
FROM DATA_TABLE
GROUP BY o, v) tmp_freq_h INNER JOIN (DATA_TABLE INNER JOIN (SELECT a, v, count(*) AS s
FROM DATA_TABLE
GROUP BY a, v) tmp_freq_v ON (DATA_TABLE.v = tmp_freq_v.v) AND (DATA_TABLE.a = tmp_freq_v.a)) ON
(tmp_freq_h.v = DATA_TABLE.v) AND (tmp_freq_h.o = DATA_TABLE.o)) tmp_frequency
GROUP BY tmp_frequency.o) tmp_o_sum INNER JOIN DATA_TABLE ON tmp_o_sum.o = DATA_TABLE.o) INNER JOIN
(SELECT tmp_frequency.a, Sum(tmp_frequency.hor) AS tmp_a_sum
FROM (SELECT DATA_TABLE.o, DATA_TABLE.a, tmp_freq_v.s AS ver, tmp_freq_h.s AS hor
FROM (SELECT o, v, count(*) AS s
FROM DATA_TABLE
GROUP BY o, v) tmp_freq_h INNER JOIN (DATA_TABLE INNER JOIN (SELECT a, v, count(*) AS s
FROM DATA_TABLE
GROUP BY a, v) tmp_freq_v ON (DATA_TABLE.v = tmp_freq_v.v) AND (DATA_TABLE.a = tmp_freq_v.a)) ON
(tmp_freq_h.v = DATA_TABLE.v) AND (tmp_freq_h.o = DATA_TABLE.o)) tmp_frequency
GROUP BY tmp_frequency.a) tmp_a_sum ON DATA_TABLE.a = tmp_a_sum.a
ORDER BY tmp_o_sum.tmp_o_sum DESC , tmp_a_sum.tmp_a_sum DESC;

Figure 3. Conformity analysis with structured query language

 +------+------+------+-------+-------+
 | o | a | v | o_sum | a_sum |
 +------+------+------+-------+-------+
2	2	1	20	20
3	2	1	20	20
2	4	1	20	20
3	4	1	20	20
2	5	1	20	18
3	5	1	20	18
2	3	0	20	16
3	3	0	20	16
2	1	0	20	12
3	1	0	20	12
6	2	1	18	20
6	4	1	18	20
6	5	1	18	18
6	3	1	18	16
6	1	0	18	12
4	2	1	16	20
4	4	1	16	20
4	5	0	16	18
4	3	0	16	16
4	1	1	16	12
5	2	0	14	20
5	4	0	14	20
5	5	1	14	18
5	3	1	14	16
5	1	0	14	12
1	2	0	12	20
1	4	0	12	20
1	5	0	12	18
1	3	0	12	16
1	1	1	12	12
 +------+------+------+-------+-------+
 30 rows in set (0.02 sec)

Figure 4. Result of the presented query

4 Conclusion
In this paper, a compact overview of conformity
analysis was given and an implementation with
structured query language was presented.
 It is also possible to define the presented query as
a structured query language view, allowing to
overlook the general complexity of the query and to
develop a conformity view of each dataset. Several
industries need the measurement of usual and
unusual behaviour in their application and such
approach could reduce the time of preprocessing the
data and concentrate only on the problem itself.

References:
[1] Võhandu, L., Kuusik, R., Torim, A., Aab, E.,

Lind, G., "Some algorithms for data table
(re)ordering using Monotone Systems," In
Proceedings of the 5th WSEAS Int. Conf. on
Artificial Intelligence, Knowledge Engineering
and Data Bases, pp. 417-422, 2006

[2] Võhandu, L., "Some problems with data
analysis," Transactions of Tallinn Technical
University, No. 366, pp. 3-14, 1974

[3] Võhandu, L. "Rapid Data Analysis Methods,"
Transactions of Tallinn Technical University,
No. 464, p.21-39, 1979.

[4] Võhandu, L., "Some Methods to Order Objects
and Variables in Data Systems," Transactions of
Tallinn Technical University, No. 482, pp. 43-
50, 1980.

[5] Aggarwal, C.C., Yu, P.S., "Outlier detection for
high dimensional data," In Proceedings of the
2001 ACM SIGMOD international conference
on Management of data, pp. 37-46, 2001.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 189

