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Abstract: - The paradigm shift from hypothesis-driven to data-driven exploratory data analysis methods has 
been gaining acceptance in several emerging research areas as self-organization, machine learning, data 
mining and  bioinformatics. In this paper, a compact overview of such data-driven method is given with short 
discussion about some properties and implementation issues and an implementation with structured query 
language is presented. One could make use of database capabilities, thereby leveraging on more than a decade 
of effort spent in making these systems robust, portable, scalable and concurrent. 
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1   Introduction 
The method of conformity analysis was initially 
presented in [1],[2],[3],[4]. The main goal of the 
analysis is to perform data reorganization for the 
input in order to align them according to specific 
property - conformity. In most cases, the rows (will 
be referred as objects in this paper) in databases are 
in the arbitrary order of insertion and attributes 
according to the initial design of the database. 
Therefore, simple glance at the database will not 
give much information or insights about the data, its 
natural organization, behaviour and evolution. 
However, all the research areas currently imploying 
classification and clustering, notice several 
fundamental fallacies of the methods - it is virutally 
impossible to describe the transformation between 
the classes and clusters. As the boundaries are 
usually fuzzy, the observations near the edges of the 
classes tend to possess a lot of information that 
would be valuable for the whole model. Conformity 
analysis aligns the objects and attributes according 
to nearest-neighbour similarity and therefore 
establishes a scale of typicality in the data. It is 
related to the field of outlier detection, which has 
important applications in the field of fraud detection, 
network robustness analysis and intrusion detection 
(review of literature and research issues in outlier 
detection available at [5]). 
     In this paper, a compact overview of the method 
is given (in section 2) and an implementation with 
structured query language is presented and discussed 
(in section 3), followed by the conclusion. 
 

2   Conformity analysis 
The algorithm for conformity analysis is presented 
in figure 1. 
Objects: 
1. Enumeration of the attribute values  for 
each attribute; 
2. Replacement of attribute values with the 
actual frequency of that value within that 
attribute; 
3. Conformity for objects is calculated 
using the sum of attribute value 
frequences; 
Attributes: 
4. Enumeration of the attribute values for 
each object; 
5. Replacement of attribute values with the 
actual frequency of that value within that 
object; 
6. Conformity for attributes is calculated 
using the sum of attribute value 
frequences. 

Figure 1. Algorithm for conformity analysis 
 
Let us look at the following numerical example. 
Table 1 is the initial dataset before any data 
manipulations and calculations. After calculating the 
conformity weights for the objects and attributes 
according to the presented algorithm, we reorder the 
elements to get the result presented in Table 2. 
Initially the algorithm has being used for reordering 
the data table ([1],[2]), but the measure of 
conformity itself enables to gain insight to the object 
(customer) behaviour real-time as the data changes 
and allows the company to tailor their strategies to 
make the relationship mutually more valuable. 
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TABLE 1 
INITIAL DATASET 

 a1 a2 a3 a4 a5 

O1 1 0 0 0 0 

O2 0 1 0 1 1 

O3 0 1 0 1 1 

O4 1 1 0 1 0 

O5 0 0 1 0 1 

O6 0 1 1 1 1 

 
 

TABLE 2 
DATASET AFTER CONFORMITY ANALYSIS 

 a2 a4 a5 a3 a1 

conform
ity 

O2 1 1 1 0 0 20 

O3 1 1 1 0 0 20 

O6 1 1 1 1 0 18 

O4 1 1 0 0 1 16 

O5 0 0 1 1 0 14 

O1 0 0 0 0 1 12 

conformity 20 20 18 16 12  

 
  
3   Implementation with SQL 
If we think about the steps in the algorithm, we can 
identify mostly enumeration, replacements and 
sorting. The idea of this paper is to delegate all the 
calculation steps to the database systems. One could 
make use of database capabilities, thereby 
leveraging on more than a decade of effort spent in 
making these systems robust, portable, scalable and 
concurrent. Also it is possible to exploit the 
underlying SQL parallelization. 
     Table with the initial data in SQL format (same 
data as the previous examples) is presented in 
figure 2. 
     Presented SQL query (in figure 3) is compatible 
with the following database systems: 

• MySQL 4.1.1-alpha-standard; 
• Microsoft SQL Server 2000; 
• Microsoft Access 2000; 
• PostgreSQL Database Server 8.1.0; 
• Oracle 10g. 

 
    Notable effort was needed for making the query 
compatible with the listed systems, as the 
development of the nested subquery functionality 
has been different for each of the systems. 

    The results of the query are presented in figure 4. 
Future work should include several optimizations 
with the indices and scalability experiments. 
 
 
 
CREATE TABLE DATA_TABLE ( o int,  a int, v int); 
 
INSERT INTO DATA_TABLE (o,a,v) VALUES ('1', '1', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('1', '2', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('1', '3', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('1', '4', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('1', '5', '0'); 

 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('2', '1', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('2', '2', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('2', '3', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('2', '4', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('2', '5', '1'); 

 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('3', '1', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('3', '2', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('3', '3', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('3', '4', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('3', '5', '1'); 

 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('4', '1', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('4', '2', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('4', '3', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('4', '4', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('4', '5', '0'); 

 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('5', '1', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('5', '2', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('5', '3', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('5', '4', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('5', '5', '1'); 

 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('6', '1', '0'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('6', '2', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('6', '3', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('6', '4', '1'); 

INSERT INTO DATA_TABLE (o,a,v) VALUES ('6', '5', '1'); 

 
Figure 2. Table and the initial data 
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SELECT tmp_o_sum.o, tmp_a_sum.a, DATA_TABLE.v, tmp_o_sum.tmp_o_sum as o_sum, tmp_a_sum.tmp_a_sum as 
a_sum 
FROM ((SELECT tmp_frequency.o, Sum(tmp_frequency.ver) AS tmp_o_sum 
FROM (SELECT DATA_TABLE.o, DATA_TABLE.a, tmp_freq_v.s AS ver, tmp_freq_h.s AS hor 
FROM (SELECT o, v, count(*) AS s 
FROM DATA_TABLE 
GROUP BY o, v) tmp_freq_h INNER JOIN (DATA_TABLE INNER JOIN (SELECT a, v, count(*) AS s 
FROM DATA_TABLE 
GROUP BY a, v) tmp_freq_v ON (DATA_TABLE.v = tmp_freq_v.v) AND (DATA_TABLE.a = tmp_freq_v.a)) ON 
(tmp_freq_h.v = DATA_TABLE.v) AND (tmp_freq_h.o = DATA_TABLE.o)) tmp_frequency 
GROUP BY tmp_frequency.o) tmp_o_sum INNER JOIN DATA_TABLE ON tmp_o_sum.o = DATA_TABLE.o) INNER JOIN 
(SELECT tmp_frequency.a, Sum(tmp_frequency.hor) AS tmp_a_sum 
FROM (SELECT DATA_TABLE.o, DATA_TABLE.a, tmp_freq_v.s AS ver, tmp_freq_h.s AS hor 
FROM (SELECT o, v, count(*) AS s 
FROM DATA_TABLE 
GROUP BY o, v) tmp_freq_h INNER JOIN (DATA_TABLE INNER JOIN (SELECT a, v, count(*) AS s 
FROM DATA_TABLE 
GROUP BY a, v) tmp_freq_v ON (DATA_TABLE.v = tmp_freq_v.v) AND (DATA_TABLE.a = tmp_freq_v.a)) ON 
(tmp_freq_h.v = DATA_TABLE.v) AND (tmp_freq_h.o = DATA_TABLE.o)) tmp_frequency 
GROUP BY tmp_frequency.a) tmp_a_sum ON DATA_TABLE.a = tmp_a_sum.a 
ORDER BY tmp_o_sum.tmp_o_sum DESC , tmp_a_sum.tmp_a_sum DESC; 

 
Figure 3. Conformity analysis with structured query language 

 
 
 
 +------+------+------+-------+-------+ 
 | o    | a    | v    | o_sum | a_sum | 
 +------+------+------+-------+-------+ 
 |    2 |    2 |    1 |    20 |    20 | 
 |    3 |    2 |    1 |    20 |    20 | 
 |    2 |    4 |    1 |    20 |    20 | 
 |    3 |    4 |    1 |    20 |    20 | 
 |    2 |    5 |    1 |    20 |    18 | 
 |    3 |    5 |    1 |    20 |    18 | 
 |    2 |    3 |    0 |    20 |    16 | 
 |    3 |    3 |    0 |    20 |    16 | 
 |    2 |    1 |    0 |    20 |    12 | 
 |    3 |    1 |    0 |    20 |    12 | 
 |    6 |    2 |    1 |    18 |    20 | 
 |    6 |    4 |    1 |    18 |    20 | 
 |    6 |    5 |    1 |    18 |    18 | 
 |    6 |    3 |    1 |    18 |    16 | 
 |    6 |    1 |    0 |    18 |    12 | 
 |    4 |    2 |    1 |    16 |    20 | 
 |    4 |    4 |    1 |    16 |    20 | 
 |    4 |    5 |    0 |    16 |    18 | 
 |    4 |    3 |    0 |    16 |    16 | 
 |    4 |    1 |    1 |    16 |    12 | 
 |    5 |    2 |    0 |    14 |    20 | 
 |    5 |    4 |    0 |    14 |    20 | 
 |    5 |    5 |    1 |    14 |    18 | 
 |    5 |    3 |    1 |    14 |    16 | 
 |    5 |    1 |    0 |    14 |    12 | 
 |    1 |    2 |    0 |    12 |    20 | 
 |    1 |    4 |    0 |    12 |    20 | 
 |    1 |    5 |    0 |    12 |    18 | 
 |    1 |    3 |    0 |    12 |    16 | 
 |    1 |    1 |    1 |    12 |    12 | 
 +------+------+------+-------+-------+ 
 30 rows in set (0.02 sec) 

 

Figure 4. Result of the presented query 
 
 

4   Conclusion 
In this paper, a compact overview of conformity 
analysis was given and an implementation with 
structured query language was presented. 
    It is also possible to define the presented query as 
a structured query language view, allowing to 
overlook the general complexity of the query and to 
develop a conformity view of each dataset. Several 
industries need the measurement of usual and 
unusual behaviour in their application and such 
approach could reduce the time of preprocessing the 
data and concentrate only on the problem itself. 
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