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Abstract: - Modeling multivariable LTI systems using generalized Orthonormal basis functions requires the 
determination of optimal poles of these bases. This paper develops a new iterative method of poles optimization for the 
generalized Orthonormal Base using the Gauss-Newton algorithm and the state space representation of these bases.  
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1   Introduction 
The generalized Orthonormal Basis functions [1], [2], 
[3] admit a variety of real or conjugate poles and regroup 
the common FIR, Laguerre and Kautz [4], [5] model 
structures which are restrictive special cases of this 
complete construction. As a consequence, these bases 
represent all type of linear, causal and stable systems. 
Notice that in [6], [7], [8] the representation of MIMO 
(Multi-Input Multi-Output) linear systems on the 
generalized Orthonormal basis functions supposes that 
the poles are fixed. In this paper we surmounted these 
difficulties by using these bases with ordinary poles. 
Therefore, to facilitate the estimation problem of the 
poles we decomposed the MIMO system in MISO 
(Multi-Input Single-Output) subsystems represented on 
the generalized Orthonormal basis functions. 
     The poles of the generalized Orthonormal bases 
filters operate nonlinear (contrary to the Fourier 
coefficients) in their constitution and condition their 
performances. The choice of these poles is primordial to 
permit the truncating of the network filters as a minimal 
order without too alter in the quality of the 
approximation. However, to situate the dynamics of the 
system and to permit an optimal and adequate choice of 
the poles, some approaches [9], [10], [11], [12], [13], 
[14] for estimation of the poles exist in the literature. In 
contrast to these approaches of poles optimization that 
leads voluminous computation when determining the 
filters sensitivities, we introduced the state space 
representation of the generalized Orthonormal base to 
solve these problems. 
     This paper is organized as follows. In the second 
section we present the new formulation of the state space 
representation of the generalized Orthonormal base and 
the matrix form of the quadratic criteria to minimize. In 

the third section the problem of poles estimation, the 
matrix computations of the gradient and the Hessien as 
well as the determination of filter sensitivities by using 
the derivative of the state space representation are 
expressed. The fourth section summarizes some 
simulation results and finally, a conclusion is given in 
the last section. 
 
 
2   Problem formulation 
We consider a MIMO linear system having r inputs and 
m outputs described by its transfer matrix )( 1−qG . Each 

elementary transfer function )( 1−qGij  (i=1,2,…,m ; 

j=1,2,…,r) can be decomposed on the generalized 
Orthonormal bases filters as follows : 
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where: 
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( ji
k
,ξ  and its conjugated ji

k
,ξ are the poles of the filter k). 

Every network (i,j) of the generalized Orthonormal bases 
filters can be described by a state space representation 
which is reformulated in a simplified version and 
rewritten in matrix form as follows: 
  

, , , ,

, , ,

( 1) ( ) ( )

ˆ ( ) ( )
i j i j i j i j j

T
i j i j i j

X k A X k B u k

y k X kθ

+ = +�	

 =	�

           (3) 

 

with )(, kX ji  is a state vector of dimension )1( , +jiN : 
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jiA ,  is a matrix of dimension )1()1( ,, jiji NN +×+  

defined by: 
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jiB ,  and ji, θ  are vectors of dimensions )1( , jiN+ : 
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The model output of a MISO subsystem can be written, 
as follows: 
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We define the quadratic criterion in a finished horizon 
time for each subsystem as: 
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where: 
 

imy , )(kei  are respectively the measurement output of 
the system and the prediction error.  
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This criterion can be written in matrix form as: 
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Since the model is linear in parameters, the optimal 
Fourier coefficients can be obtained by solving directly 
the following normal equation, as explained in [6], [7]: 
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3   Poles Estimation 
To calculate the poles of the generalized Orthonormal 
basis functions, an iterative algorithm is necessary 
minimizing the quadratic criterion expressed nonlinear 
to these poles. This iterative optimization method of the 
second order uses Newton type algorithms, characterized 
by adaptive steps according to the poles emplacement in 
each iteration time. These algorithms are based on the 
development of the criteria J in order two. 
The poles vector of the MISO subsystem at the iteration 
(s+1) can be written in function of the poles vector at the 
iteration (s), as follows: 
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where the step iµ  of the Newton algorithm has for role 
to attenuate or to amplify the effect of the Hessien 
inverse. 
 
 
3.1 Determination of the gradient and the 
Hessien 
The poles of each subsystem regrouped in the vector iξ , 

will be optimized by using the iterative method (22).  
To calculate the gradient we differentiating (14) in 
relation to the poles vector iξ : 
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where jiR ,  is a matrix defined by: 
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     Determining the second derivative of the error on the 
poles required computing all filter sensitivities of order 
two. Therefore, we determine the approximate Hessien 
taking place from the only knowledge of function 
sensitivities of the first order, used in gradient 
calculation. The Hessien is calculated by differentiating 
the gradient (23) on the poles vector: 
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where jiS ,  is a matrix defined by: 
 

�
�

�



�
�

�

�
Θ

∂
Ψ∂Θ

∂
Ψ∂−= iji

N

i
iji

i
ji

ji

S ,,
0

,

,
ξξ

�           (28) 

 
We define the filter sensitivities in relation to the poles 
for each subsystem. Either for j=1,2,…,r and 
p=0,1,…, jiN , : 
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By using (29), the matrixes jiR ,  and jiS ,  can be written 

as follow: 
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According to (30) and (31) we deduce that: 
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By using (24), (27) and (15), we can determine directly 
the gradient (23) and the approximate Hessien (26) as 
follow: 
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with ),2,1(  , rjP ji �=  are vectors  defined by: 
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parameters to estimate in each subsystem.  
 
 
3.2 Determination of the filter output sensitivities 
The filter sensitivities in relation to the poles at each 
instant k can be written as: 
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To determine the sensitivities, we derivate the state 
space representation of the general Orthonormal base (3) 
as follows: 
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The elements of the matrix jiF ,  (p=1,2,…, 1, +jiN  

q=1,2,…, 1, +jiN ) are given by: 
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The elements of the vector jiG ,  (p=1,2,…, 1, +jiN ) are 

given by: 
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     Determining the optimal poles for each MISO 
subsystem can be summarized as follows: 
1) Off line computation: 
- Acquisition of necessary input-output signals, 
- Determination of optimal truncating orders. 

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007      200



2) Computation at each iteration: 
- Determination of the Fourier coefficients vector ˆ

iΘ  
from (21),  

- Determination of the matrix jiF ,  and the vector jiG ,  

from (44) and (51), 
- Determination of the filter sensitivities from (42), 
- Determination of the vector iE  and the matrix iR  

from (13) and (30), 
- Determination of the gradient and the Hessien from 

(36) and (37), 
- Determination of optimal poles from (22). 
 
 
4   Simulation Results 
The utility of optimization method of the poles for the 
generalized Orthonormal basis functions is illustrated 
with a brief simulation study. Therefore, we consider a 
MIMO linear system with r=2 inputs and m=2 outputs 
described by the following transfer matrix with real 
poles.  
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The input signals selected for simulation are of 
amplitudes and random periods. We consider the 
situation where to estimate the poles of the system from 
the input-output sequences of H=200 points data record.  
 

 
Fig1. Input-Output signals of the system 

 
The quadratic error iJ  (i=1,2) is evaluated for various 
truncating orders varying for example from 0 to 5. It 
becomes minimal from 1, =jiN  (i=1,2; j=1,2). We will 

keep these optimal truncating orders in the rest of 
simulations.  

The vector of the poles )2,1(  =iiξ  is initialized at 

zeros. By applying the optimization algorithm of the 
poles, we obtained the results shown in figures 2 and 3.  

 

 
Fig.2. Estimation of the poles for the first subsystem. 

 

 
Fig.3. Estimation of the poles for the second subsystem 

 
According to figures 2 and 3, we note that the optimal 
poles converge quickly in a reduce number of iterations, 
either from 20 iterations for first subsystem case and 15 
iterations for the second. 
In the follows table we summarize the optimal poles 
estimated by the optimization method and the Fourier 
coefficients estimated by the simple mean square 
method. 
 

Table 1: Optimal poles and Fourier coefficients 

 
 

To validate the optimization method after estimation of 
the poles, we draw in figures 4 and 5 the model and 
estimation outputs. The prediction errors (error between 
the model output and its estimation) are given in the 
same figures.  We note that this error is negligible of 

144 10−×  and 142 10−×  orders. 
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Fig.4. Model and Estimation outputs of the first 

subsystem 
 

 
Fig.5. Model and Estimation outputs of the second 

subsystem 
 
 

5   Conclusion  
In this paper, a new optimization method of ordinary real 
poles for the generalized Orthonormal basis functions 
has been proposed. We estimated the poles of a MIMO 
linear system represented on the generalized 
Orthonormal basis functions from an ordinary data 
record. The efficiency of this method mainly resides in 
the initialization at zeros of the poles, what avoids the 
research of initial conditions different to zero. As a 
consequence, the models obtained in simulations prove 
the successfully of this new method which will be 
studied in nonlinear systems represented on these bases. 
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