
Performance Analysis and Portability issues of 64-bit Message

Passing Interface for Tera Scale System

PRABU D, ANSHU GARG, VANAMALA V, SRIDHARAN R,

 PRAHLADA RAO BB, MOHANRAM N

Systems Software Development Group,

Centre for Development of Advanced Computing (C-DAC), Bangalore, INDIA

‘C-DAC Knowledge Park’

No 1, Old Madras Road, Byappanahalli, Bangalore

INDIA

Abstract--- This paper describes the issues underlying the development of 64-bit C-MPI (C-DAC

Message Passing Interface) and the porting semantic and strategies of 64-bit C-MPI. This work

discusses various issues arising during the porting from 32-bit C-MPI to 64-bit C-MPI that will serve

as guidelines to scientific community for their advanced MPI porting work. The ported 64-bit C-MPI

is tested, results of some initial experiments comparing 32-bit and 64-bit C-MPI performance under

Ethernet and PARAMNet-II interconnect network is presented.

 Key-Words--: 64-bit C-MPI, PARAMNet-II, 64-bit MPI, MPI porting, PARAM Padma, C-MPI.

1 Introduction
In the present scenario the MPI applications are

emerging with 64-bit compatibility like Climate

modeling, Computational fluid dynamics, Nuclear

weapon testing etc. There is more demand on 64-bit

MPI rather than 32-bit MPI. The new version of 64-

bit MPI will provide the way to overcome the 32-bit

MPI drawbacks in processing much larger size data.

This is accomplished with 64-bit computing machine.

Once such machines or nodes are ready, all the

underlying software must be converted to 64-bit

compatibility. If the 64-bit Supercomputing

application has to run on 64-bit CPU, the parallel

programming libraries like (Message Passing

Interface) and its supporting files and data have to be

made compatible to 64-bit operating environment.

This enables applications to access and manipulate

data items that are upto 64-bit size. The prime

advantages of 64-bit MPI porting are given below.

(1) MPI applications will be able to perform

computations having larger and more precise data

types.

(2) MPI applications will be able to address more

Memory, upto 18 Exabytes in 64-bit environment.

(3) Many 64-bit MPI applications will be able to read

and write files that are of larger size.

 The rest of this paper is organized as follows:

Section 2 gives a brief overview of the C-MPI [6].

Section 3 presents the different methods of dealing

with the porting task, and the various ways of

maintaining backward compatibility with 32-bit C-

MPI. Section 4 summarizes the porting efforts and

presents in detail the most relevant modifications that

had to be made to the C-MPI source code. Section 5

discusses about the porting testbed and performance

evaluation of MPI. Section 6 discusses critical

porting issues of MPI. The conclusions and future

work are presented in Section 7.

2 Overview of C-DAC Message

 Passing Interface
C-MPI, the message-passing model of parallel

computation has emerged as an efficient and

recognized paradigm for parallel programming. The

Message Passing Interface (MPI) is a standard for

message passing, defined by a panel of parallel

programming industry leaders including

representatives from the national laboratories,

universities and key parallel system vendors. Several

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 39

parallel applications have been implemented using

MPI calls. C-MPI is a high performance

implementation of the MPI standard for a Cluster of

Multi Processors (CLUMPS). By adhering to the

standards, C-MPI supports the execution of the

multitude of MPI applications with enhanced

performance on CLUMPS. It can run on both Gigabit

Ethernet and PARAMNet-II [3].

2.1 MPI Optimization Model
C-MPI optimizes a subset of MPI collective calls by

using efficient algorithms for CLUMPS architecture.

It also leverages on the fact that most of the high

performance networks provide a substantial exchange

communication bandwidths. This allows the tuned

algorithms to simultaneously send and receive

messages over the network, which in turn helps to

reduce the number of communication hops. In

addition, the algorithms effectively use the higher

shared memory communication bandwidths on multi

processor nodes. For optimal performance on the

PARAM Padma [1] PARAM Padma Supercomputer

is a heterogeneous environment having compute

nodes running AIX and File Servers based on Solaris

with high bandwidth, low latency PARAMNet switch

as system area network with MPI software as C-MPI.

Fig. 1 C-MPI Architecture and Control flow

C-MPI can be operated directly over the high

performance system area networks in user space,

using lightweight communication protocols. These

protocols substantially improve the point-to-point

communication performance. As a result, the C-MPI

collective calls perform better as compared to the

implementation over the TCP/IP. C-MPI architecture

as shown in Figure 1 is designed to achieve high

performance and portability. It is layered over

Abstract Device Interface (ADI) [5] to maintain

portability. On C-DAC’s PARAM Padma [2], C-MPI

employs both TCP/IP [7] and C-VIA in the

underlying ADI layer.

 The C-MPI functions are implemented in terms of

macros and functions. The upper layer does the

communication of control information and the lower

layer performs the transfer of data from one process

address space to another.

2.2 Compatibility With MPI
C-MPI is based on the MPICH [4] implementation

from Argonne National Lab [5] and Mississippi State

University and implements all MPI functions. The

implementation closely follows the published standard

and allows programmers to write portable parallel

applications, which operate on the PARAM Open

Frame system and other Cluster systems supporting

the standard. MPI applications only need to be

relinked with C-MPI libraries to function on the

CLUMPS.

3 Methodology For C-MPI

 Porting Task
The 64-bit MPI APIs remain virtually identical to the

32-bit MPI APIs. Only a few data types and structures

have been changed, to reflect certain items that grow

to 64-bit data size. So for most applications, porting

boils down to recompiling the source code with

applicable compiler options, making sure we have got

all the source code we need (or 64-bit binaries for

third-party libraries and DLLs you use).

 Then compile the source code by enabling –q64 and

–qwarn64 switches of the compiler. The –q64 instruct

the compiler to recompile source code for the 64bit

architecture whereas –qwarn will emit warning about

non-portable section of the source code by going

through this warning, user can easily identify the

portion of the source code and fix it for the 64bit

architecture.

User Task (C-MPI Application)

 API

Protocol Module

PARAMNet-II /VIPL Library

Collective
Communication

Point-to-point
Communication

C-VIA
TCP/IP

Shared
Memory

Ethernet

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 40

4 Porting Efforts
In this section we present the procedure that can be

used during efforts to port 32-bit MPI to 64-bit MPI.

It is intended as a guideline for projects that deal with

porting a similarly large library to 64-bit MPI:

Modify the source code lines reported by the Porting

procedure discussed in section 3. Most of these

changes have to do with replacing the data structures

used for storing addresses, replacing network

functions for data access, address transformation, and

replacing the constants that have been changed for 64-

bit MPI.

(1) Make any other necessary modifications in more

subtle places not reported by the porting

methodology.

(2) Test and debug the code, correcting any issues that

arise.

(3) Verify completeness of porting effort.

 The first step is to thoroughly read and understand

the source code in order to become familiar with the

overall structure and techniques used, especially if the

person who undertakes the porting task has not been

involved in the initial development of the project. The

special characteristics of the specific project will

determine the most appropriate approach to the

porting task. For the initial phases of the porting a

parses the source code and reports the source code

lines that contain 32-bit-dependent code can prove

very useful. The relevant changes are probably rather

straightforward, and can proceed in a mechanistic

way.

4.1 Modification in the Source Code
We have ported nearly 80% of our existing 32-bit

CMPI to 64-bit mode in order to enable it to work in

64-bit environment. Issues faced during this work are

as follows.

(1) We have faced segmentation fault while

running sample MPI application because of

address out of bound. To overcome this

changes are made the in header file, mpi-internal.h.

The initial structure variable is gprocs[1] to

gprocs[1024][mpip_group structure].

(2) C/Fortran interfacing should be Taken

care appropriately. Especially pointers from

MPI’s C code when assigned to pointers in

MPI FORTRAN code, vice versa. This is because

size of pointer becomes 8-bytes in 64-bit C

code, whereas it remains 4-bytes in 64- bit

FORTRAN.

 (3) pthread_init() problem because of

gshmalloc.c. It was returning fixed address,

which was causing problem. Problem

of zero byte allocation by malloc()

has been fixed by making it returning

value one byte.

(4) We have rearranged two structures, viz, freelist_t

and struct sbpoolcb in mpi_shm.h. Order of

structure members is descending.

(5) Using size of () operator instead of Using actual

numerical size of variables.

(6) Re-arranging the members of the structures so as

to minimize padding.

(7) Limitations with arrays are checked thoroughly.

(8) Pointer and long warnings using '-qwarn64'

option should be eliminated.

5 Experimental Setup
The effectiveness of the proposed high performance

64-bit CMPI is tested with the C-DAC's Tera-Scale

Supercomputing Facility (CTSF)[2] is located at C-

DAC Bangalore, India as shown in Figure 2.

Fig. 2 Picture of C-DAC's Tera-Scale Supercomputing Facility

(CTSF)

5.1 Test bed Environment for C-MPI

 Porting work
PARAM Padma as shown in Figure 3 is C-DAC's

High performance scalable computing cluster,

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 41

currently operating with a peak computing power of

One Teraflop.

Table 1

Description Of PARAM Padma

SpecificationSpecificationSpecificationSpecification
Compute Compute Compute Compute
nodesnodesnodesnodes

File serversFile serversFile serversFile servers

Configuration

62 nos. of 4
ways SMP and
one node. of
32 way SMP

6 nos of 4 ways
SMP

No. of
processors

248(Power
4@1GHz)

24(UltraSparc-
IV@900MHz)

Aggregate
memory

0.5 Terabytes 96 Gigabytes

Internal
storage

4.5 Terabytes 0.4 Terabytes

Operating
system

AIX/LINUX Solaris

Peak
computing
power

992 GF (~1
TF)

--

 The Computing and storage configuration is shown

of PARAM Padma are given in Table 1. Effectiveness

of the proposed RSI has been tested with PARAM

Padma AIX cluster of 4 ways SMP nodes connected

by PARAMNet network as given in Table 1.

5.2 Performance Evaluation and

 Discussion
The performance indices of 64bit MPI are measured

in terms of latency and bandwidth. In this experiment

we have tested our 64bit MPI with tested with

Latency and bandwidth benchmark on two network
interconnects viz., PARAMNet-II and Gigabit

Ethernet. A set of test suites has been used to model

the performance of MPI point-to-point on PARAM

Padma. These suites compare the performance of

point-to-point communications, including send and

receive overheads for different (contiguous) message

lengths and also estimate the network latency and

bandwidth. A popular method for measuring

communication overheads for a point-to-point

communication (e.g., between processor 0 and

processor 1) is the round trip scheme. It is observed

that the latency (zero byte length latency) at the MPI

layer is 25 µs and bandwidth is 80 MB/sec using

PARAMNet-II network. The overhead measurement

time for a MPI blocking point-to-point

communication using various message sizes ranging

from 0 bytes to 10 MB between two processors of two

different nodes of PARAM Padma.

Fig.3 Latency readings of 32-bit and 64-bit

C-MPI over Gigabit Ethernet

0

100

200

300

400

500

600

1 4 16 64 25
6

10
24

40
96

Data Size(Bytes)

u
 s

e
c

32-bit C-MPI

64-bit C-MPI

Fig. 4 Latency readings of 32-bit and 64-bit C-

MPI over PARAMNet-II

0

20

40

60

80

100

120

1 4 16 64 25
6

10
24

40
96

Data Size(Bytes)

u
 s

ec

32-bit C-MPI

64-bit C-MPI

are shown in Fig. 3 and Figure.4 respectively and

bandwidth for a MPI blocking point-to-point

communication using various message sizes ranging

from 0 bytes to 10 MB between two processors of two

different nodes of PARAM Padma is shown in figure

5 and 6.

It is found that the bandwidth is good in the case of

64bit CMPI over PARAMNet-II for different

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 42

(contiguous) message lengths when compare to 32bit

CMPI.

Fig.5 Bandwidth reading of 32-bit and 64-bit C-

MPI overGigabit Ethernet

0

20000

40000

60000

80000

100000

120000

1 4 16 64 25
6

10
24

40
96

Data Size(Bytes)

K
B

/s

32-bit C-MPI

64-bit C-MPI

Fig.6 Bandwidth readings of 32-bit and 64-bit over

PARAMNet-II

0

10000

20000

30000

40000

50000

60000

1 4 16 64 25
6

10
24

40
96

Data Size(Bytes)

K
B

/s

32-bit C-MPI

64-bit C-MPI

6 Porting Issues
There are two kinds of issues that introduce

difficulties for the porting effort: isolating the

Structures and function that have to be modified, and

the fact that some of the indirect dependencies might

be scattered or affect large portions of the source

code. In this section we report some of the most

difficult issues that were revealed during the porting

of the C-MPI project that required changes not easily

identifiable from the beginning.

(1) In C-MPI the sending process completes and

looping in MPI Finalize. Receiving process looping in

MPIRecv. This is because the numbers of descriptors

available at receiving end are not enough. After a

great struggle we have identified and changed DS[2]

to DS[4] in /usr/include/vipl.h

(2) We encountered segmentation fault during NAS

benchmarking in our PARAM Padma Cluster using

C-MPI over Ethernet network. The NAS Parallel

Benchmarks suite is widely used to compare the

performance of all types of parallel computing

platforms, since it contains computational kernels that

are representative of several different algorithms used

in real-world applications. NAS 2.4 constitutes eight

CFD problems, coded in MPI and Standard

Fortran77/C. We rectified it changing mpi-internal.h,

mpi-fortan.h, mpi.h, fhandle.c, request.c ,waitall.c ,

waitall_f.c and isend.f.c

(3) While benchmarking with P-COMS v-1.1.3

(PARAM - Communication Overhead Measurement

Suites) – a set of test suites are been used to model the

performance of MPI point-to-point and collective

communications on PARAM Padma. These suites

compare the performance of point-to-point

communications, including send and receive

overheads for different send and receive modes and

for different (contiguous) message lengths and also

estimate the network latency and bandwidth. Many

times we faced problem like programs exiting

without giving error message. After a long struggle

we identified this problem and changed, an If

condition of our code from

“size<PI_BSEND_OVERHEAD” while testing

oneway_buff_send in buffersend

(4) While testing C-MPI over PARAMNet using

NAS Benchmarking on PARAM Padma, we faced

problem with parament code error=0x101(remote

descriptor error). Changed to MAX_DATA_SIZE=

(1024*16)- sizeof (paramnet descriptor) – sizeof

(paramnetpacket_eager_start) from MAX-

DATA_SIZE = ((1024*16))-64

sizeof(viadev_packet_eager_start) in

mpi/engine/cvia/defines.h. Here 64 is sizeof

(paramnet descriptor) in bytes for 32-bit and 88-bytes

in 64-bit.

 There were also a few dependencies of this kind

scattered in a lot of other classes, mainly in the

library. Because such dependencies are not detectable

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 43

using an automated tool and because of the very large

size of the source code base, this was the most time-

consuming part of the modifications in the source ode

and also the cause for a number of bugs that appeared

during the porting.

7 Conclusions And Future

 Work
In the present scenario it is inevitable for all scientific

applications to work under 64-bit environment for it

large addressable memory, Computational speed,

large file size We believe that our MPI porting

strategies will be useful and may provide rule of

thumb for the scientific community for migrating the

32-bit MPI to 64-bit MPI. In Future work, we have

planned for Grid enabled 64-bit C-MPI [10] for the

Supercomputing community.

References:
[1] PARAM Padma Supercomputing Cluster, (C-DAC)

 India, http://www.cdac.in/html/parampma.asp

[2] C-DAC Terascale supercomputing facility CTSF,

 www.cdac.in/html/ctsf/resource.asp

[3] High Speed Network ,PARAMNet-II,

 www.cdac.in/HTmL/pdf/PARAMNet.pdf

[4] W. Gropp, E. Lusk, N. Doss, A. Skjellum, "A

 high-performance, portable implementation

 of the MPI message passing interface

 standard",in Parallel Computing, vol. 22, no.

 6, pp. 789-828, September 1996

[5] William Gropp, Ewing Lusk “MPICH Abstract

 Device Interface, Version 3.3,” MCSD, Argonne

 National Laboratory, December 2001.

 http://www.cse.ohio-state.edu/~panda/788/paper/

 c_adi3man.pdf

[6] C-DAC Message Passing Interface,

 http://www.cdac.in/html/ssdgblr/cmpi.asp

[7] TCP/IP. Available at

 http://www.ietf.org/rfc/rfc1180.txt

[8] NAS, Parallel Benchmark

 www.nas.nasa.gov/Software/NPB

[9] PARAM- Communication Overhead

 Measurement Suites (P-COMS), Centre for

 Development of Advanced Computing, Pune,

 India. http://www.cdac.in/html/betatest/hpc.asp

[10] ‘Garuda’, The National Grid Computing

 Initiative, CDAC Bangalore INDIA

 http://www.garudaindia.in/tech research.asp

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 44

