

FPGA Implementation of Viterbi Decoder

HEMA.S, SURESH BABU.V, RAMESH P

Dept of ECE, College of Engineering Trivandrum

Kerala University

Trivandrum, Kerala.

INDIA

Abstract: - Convolutional encoding with Viterbi decoding is a powerful method for forward error correction. It has

been widely deployed in many wireless communication systems to improve the limited capacity of the

communication channels. The Viterbi algorithm, which is the most extensively employed decoding algorithm for

convolutional codes. In this paper, we present a field-programmable gate array implementation of Viterbi Decoder

with a constraint length of 11 and a code rate of 1/3. It shows that the larger the constraint length used in a

convolutional encoding process, the more powerful the code produced.

Key-Words: - Convolutional codes, Viterbi Algorithm, Adaptive Viterbi decoder, Path memory, Register Exchange,

Field-Programmable Gate Array (FPGA) implementation.

Hema S. is M.Tech scholar with the Department of ECE,

College of Engineering Trivandrum.E-mail: hemarajen@gmail.com

Suresh Babu V. is with the Department of ECE, College of Engineering

Trivandrum.E-mail:vsb_sreeragam@yahoo.co.in

Ramesh P is with the Dept of ECE,,Munnar Engineering.

Email : ramp1718009@rediffmail.com

1 Introduction

With the growing use of digital communication, there

has been an increased interest in high-speed Viterbi

decoder design within a single chip. Advanced field

programmable gate array (FPGA) technologies and well-

developed electronic design automatic (EDA) tools have

made it possible to realize a Viterbi decoder with the

throughput at the order of Giga-bit per second, without

using off-chip processor(s) or memory. The motivation

of this thesis is to use VHDL, Synopsys synthesis and

simulation tools to realize a Viterbi decoder having

constraint length 11 targeting Xilinx FPGA

technology.[5]

 The Viterbi algorithm develops as an asymptotically

optimal decoding algorithm for convolutional codes. It

is nowadays commonly using for decoding block codes.

Viterbi Decoding has the advantage that it has a fixed

decoding time. It is well suited to hardware decoder

implementation.Viterbi decoding of convolutional codes
found to be efficient and robust. Although the viterbi

algorithm is, simple it requires O(2
n-k

) words of

memory, where n is the length of the code words and k

is the message length, so that n k− is the number of

appended parity bits. In practical situations, it is

desirable to select codes with the highest minimum

Hamming distance that decodes within a specified time

and an increased minimum Hamming distance mind

implies an increased number of parity bits. Our viterbi

decoder necessarily distributes the memory required

evenly among processing elements [1].

 2. Convolutional Code

2.1 Convolutional Encoding

 Convolutional code is a type of error-correcting code

in which each (n≥m) m-bit information symbol (each m-

bit string) to be encoded is transformed into an n-bit

symbol, where m/n is the code rate (n≥m) and the

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 162

transformation is a function of the last k information

symbols, where K is the constraint length of the code.

To convolutionally encode data, start with k memory

registers, each holding 1 input bit. Unless otherwise

specified, all memory registers start with a value of

0.The encoder has n modulo-2 adders, and n generator

polynomials—one for each adder (see figure1).An input

bit m1 is fed into the leftmost register. Using the

generator polynomials and the existing values in the

remaining registers, the encoder outputs n bits [1].

Figure 1: The rate ½ Convolutional encoder

2.2 Viterbi Algorithm

A. J. Viterbi proposed an algorithm as an

‘asymptotically optimum’ approach to the decoding of

convolutional codes in memory-less noise. The Viterbi

algorithm (VA) is knows as a maximum likelihood

(ML)-decoding algorithm for convolutional codes.

Maximum likelihood decoding means finding the

code branch in the code trellis that was most likely to be

transmitted. Therefore, maximum likelihood decoding is

based on calculating the hamming distances for each

branch forming encode word. The most likely path

through the trellis will maximize this metric.[7]

Viterbi algorithm performs ML decoding by reducing

its complexity. It eliminates least likely trellis path at

each transmission stage and reduce decoding complexity

with early rejection of unlike pathes.Viterbi algorithm

gets its efficiency via concentrating on survival paths of

the trellis. The Viterbi algorithm is an optimum

algorithm for estimating the state sequence of a finite

state process, given a set of noisy observations.[2]

The implementation of the VA consists of three parts:

branch metric computation, path metric updating, and

survivor sequence generation. The path metric

computation unit computes a number of recursive

equations. In a Viterbi decoder (VD) for an N-state

convolutional code, N recursive equations are computed

at each time step (N = 2k-1, k= constraint length). [12]

Existing high-speed architectures use one processor per

recursion equation. The main drawback of these Viterbi

Decoders is that they are very expensive in terms of chip

area. In current implementations, at least a single chip is

dedicated to the hardware realization of the Viterbi

decoding algorithm The novel scheduling scheme allows

cutting back chip area dramatically with almost no loss

in computation speed.[15]

3. Viterbi Decoder

A viterbi decoder uses the Viterbi algorithm for

decoding a bitstream that has been encoded using

Forward error correction based on a code. There are

other algorithms for decoding a convolutionally encoded

stream (for example, the Fano algorithm). The Viterbi

algorithm is the most resource consuming, but it does

the maximum likelihood decoding. Figure 2 shows the

block diagram of viterbi decoder

It consists of the following modules: [7]

 Branch Metrics, ACS, register exchange,

maximum path metric selection, and output register

selection.

Figure:2 Block Diagram of Viterbi Decoder

3.1. Branch Metrics

The branch metric computation block compares the

received code symbol with the expected code symbol

and counts the number of differing bits .Figure 3 shows

the block diagram of branch metrics[7]

Figure: 3 Branch Metrics of viterbi decoder

3.2. Add-Compare-Select (ACS)

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 163

The two adders compute the partial path metric of

each branch, the comparator compares the two partial

metrics, and the selector selects an appropriate branch.

The new partial path metric updates the state metric of

state, and the survivor path-recording block records the

survivor path.[7]

Figure 4 shows the block diagram of ACS block

Figure:4 ACS block

3.3. Path Metric Calculation and Storage

 The ACS circuit consisting of adders, a comparator, a

selector, and several registers calculates the path metric

of each convolutional code state. The number of “states”

N, of a convolutional encoder which generates n

encoded bits is a function of the constraint length K and

input bits b .The path metric calculations just assigned

the measurement functions to each state, but the actual

Viterbi decisions on encoder states is based on a

traceback operation to find the path of states. The

important characteristic is that if every state from a

current time is follow backwards through its maximum

likelihood path, all of the paths converge at a point

somewhere previous in time. This is how traceback

decisively determines the state of the encoder at a given

time, by showing that there is no better choice for an

encoder state given the global maximum likelihood

path.[6]

3.4 .Register-exchange and Traceback

The register-exchange approach assigns a register to

each state. The register records the decoded output

sequence along the path starting from the initial state to

the final state, which is same as the initial state. This

approach eliminates the need to traceback, since the

register of the final state contains the decoded output

sequence. Hence, the approach may offer a high-speed

operation, but it is not power efficient due to the need to

copy all the registers in a stage to the next stage.[10]

The other approach called traceback records the

survivor branch of each state. It is possible to traceback

the survivor path provided the survivor branch of each

state is known. While following the survivor path, the

decoded output bit is ‘0’ (‘1’) whenever it encounters an

even (odd) state. A flip-flop is assign to each state to

store the survivor branch and the flip-flop records ‘1’

(‘0’) if the survivor branch is the upper (lower) path. [6]

3.4.1) Traceback read (tb)

There are three types of operations performed inside a

TB decoder:

This is one of the two read operations and consists of

reading a bit and interpreting this bit in conjunction with

the present state number as a pointer that indicates the

previous state number (i.e. state number of the

predecessor) .[4]

3.4.2) Decode read (dc)

This operation proceeds in exactly the same fashion as

the traceback operation, but operates on older data, with

the state number of the first decode read in a memory

bank being determined by the previously completed

traceback. Pointer values from this operation are the

decoded values and are sent to the bit-order reversing

circuit.

3.4.3) Writing new data (wr)

The decisions made by the ACS write into locations

corresponding to the states. The write pointer advances

forward as ACS operations move from one stage to the

next in the trellis, and data are written to locations just

freed by the decode read operation .

3.4.5) Selective Update and Shift Update

It is possible to form registers by collecting the flip-

flops in the vertical direction or in the horizontal

direction. When a register is formed in vertical

direction, it is referred to as “selective update”. When a

register is formed in horizontal direction, it is referred to

as “shift update”. In selective update, the survivor path

information is filling from the left register to the right

register as the time progresses. In contrast, survivor path

information is applied to the least significant bits of all

the registers in “shift update”. Then all the registers

perform a shift left operation. Hence, each register in the

shift update method fills in survivor path information

from the least significant bit toward the most significant

bit.[9]

3.4.6) Survivor Path Memory

To implement the survivor path memory architecture,

three types of path memory management schemes are

commonly used: register-exchange (RE), trace-back

(TB), and RE-TB-combined. The RE approach is

suitable for fast decoders, but occupies large silicon real

estate and consumes lots of power. On the other hand,

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 164

the TB path memory usually consumes less power, but is

slower than its RE counterpart, or requires a clock

rate higher than the decoding throughput. The RE-

TB-combined approach, is a good alternative to the

RE approach for high-speed applications. [7]

4. The Field Programmable Gate Array

(FPGA)
A Field Programmable Gate Array (FPGA) is a

semiconductor device containing programmable logic

components and programmable interconnects. The

programmable logic components can be programmed to

duplicate the functionality of basic logic gates such as

AND, OR, XOR, NOT or more complex combinational

functions such as decoders or simple math functions. In

most FPGAs, these programmable logic components (or

logic blocks, in FPGA parlance) also include memory

elements, which may be simple flip-flops or more

complete blocks of memories. Each process is assigned

to a different block of the FPGA and operates

independently. A shared register between the processors

implements the arcs, which represent the transmission of

the weights and paths for each state to another

processor. All systems were implementing in behavioral

VHDL.A synthesis tool is used to construct the RTL

level VHDL for the decoders. This synthesized unit is

then simulated using a commercial simulation tool for

VHDL.In VHDL the initial conditions such as the

location of the weights and paths needed to update a

state are readily coded and so don’t need to be

calculated for each cycle of the decoding process. The

received message is fan out into all the processors a bit

at a time and this is the logical clock for the machine.

On receiving each input bit, each processor reads the

shared registers, updates the weights and paths and

writes the results to the shared registers. [11]

FPGAs originally began as competitors to CPLDs and

competed in a similar space, that of glue logic for PCBs.

As their size, capabilities and speed increase, they began

to take over larger and larger functions to the state

where they are now market as competitors for full

systems on chips. They now find applications in any

area or algorithm that can make use of the massive

parallelism offered by their architecture.[2]

The typical basic architecture consists of an array of

configurable logic blocks (CLBs) and routing channels.

Multiple I/O pads may fit into the height of one row or

the width of one column. Generally, all the routing

channels have the same width (number of wires).

An application circuit must be map into an FPGA

with adequate resources. The typical basic architecture

consists of an array of configurable logic blocks (CLBs)

and routing channels. Multiple I/O pads may fit into the

height of one row or the width of one column.

Generally, all the routing channels have the same width

(number of wires). [13]

FPGAs are an extremely valuable tool in learning

VLSI design. While the traditional techniques of full-

and semi-custom design certainly have their places for

analog, high performance or complex applications, the

prospect of putting “their” chip to the decisive test of a

real hardware environment motivates students

tremendously. [10]

To define the behavior of the FPGA the user provides

a hardware description language (HDL) or a schematic

design. Common HDLs are VHDL and Verilog. Then,

using an electronic design automation tool, a

technology-mapped netlist generates. The netlist can

then be fitted to the actual FPGA architecture using a

process called place-and-route, usually performed by the

FPGA Company’s proprietary place-and-route software.

The user will validate the map, place and route results

via timing analysis, simulation, and other verification

methodologies. Once the design and validation process

is complete, the binary file generated (also using the

FPGA company's proprietary software) is used to

(re)configure the FPGA device. Figure: 5 show the

design flow of FPGA. [2]

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 165

Figure: 5 Design flow of FPGA

To simplify the design of complex systems in FPGAs,

there exist libraries of predefined complex functions and

circuits that have been tested and optimized to speed up

the design process. These predefined circuits are called

IP cores, and are available from FPGA vendors and

third-party IP suppliers (rarely free and typically

released under proprietary licenses).

In a typical design flow, an FPGA application

developer will simulate the design at multiple stages

throughout the design process. Initially the RTL

description in VHDL or Verilog is simulated by creating

test benches to stimulate the system and observe results.

Then, after the synthesis engine has mapped the design

to a netlist, the netlist is translated to a gate level

description where simulation is repeated to confirm the

synthesis proceeded without errors. Finally, the design is

laid out in the FPGA at which point propagation delays

can be added and the simulation run again with these

values back annotated onto the netlist. The typical

FPGA logic block consists of a 4-input lookup table

(LUT), and a flip-flop, as shown in Figure 6.[3]

Figure:6 Logic Block of FPGA

5. Conclusion

In this paper, a Viterbi algorithm based on the

strongly connected trellis decoding of binary

convolutional codes has been presented. The use of

error-correcting codes has proven to be an effective way

to overcome data corruption in digital communication

channels. The adaptive Viterbi decoders are modeled

using VHDL, and post synthesized by Xilinx Design

Manager FPGA logic. The design simulations have been

done based on both the VHDL codes at RTL and the

VHDL codes generated by Xilinx design manager after

post synthesis.

We can implement a higher performance Viterbi

decoder with such as pipelining or interleaving. So in

the future, with Pipeline or interleave the ACS and the

trace-back and output decode block, we can make it

better.

References
 [1].”FPGA Design and Implementation of a Low-Power

Systolic Array-Based Adaptive Viterbi

Decoder”,IEEE Transactions on circuits and

systemsi: regular papers, vol. 52, no. 2, February

2005.

[2]. ”A Parallel Viterbi Decoder for Block Cyclic and

Convolution Codes”, Department of Electronics

and Computer Science, University of Southampton.

April 2006

[3]. ”A Dynamically Reconfigurable Adaptive Viterbi

Decoder”, International Symposium on FPGA

2002.

[4]. ”A Reconfigurable, Power-Efficient Adaptive

Viterbi Decoder”, This work was sponsored by

National Science Foundation grants.

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 166

[5]. X.Wang and S.B.Wicker,”An Artificial Neural

Net Viterbi Decoder,” IEEE

Trans.Communications,vol.44,no.2,pp.165-

171,February 1996.

[6]. D. Garrett and M. Stan, ” Low power architecture

of the soft-output Viterbi algorithm,”Electronic-

Letters, Proceeding 98 for ISLEPD 98, p 262-

267, 1998.

[7]. ”RTL implementation of Viterbi decoder”, Dept. of

Computer Engineering at Linkpings

universitet.June 2006

[8]. Ranjan Bose ,“Information theory coding and

Cryptography”, McGraw-Hill.

[9]. G. Marcone and E. Zincolini. ”An efficient neural

decoder for convolutional codes.” European

Trans.Telecomm.,6(4):439-445, July-August 1995.

[10]. J.G. Proakis. ”Digital Communications.”

McGraw-Hill,second edition, 1989.

[11]. A. J. Viterbi,”Convolutional codes and their

performance in communication systems,” IEEE

Trans. Commun., vol. COM-19, pp. 751 -772,Oct.,

1971.

[12]. LM Dong, SONG Wentao, LIU Xingzhao, LUO

Hanwen, XU Youyun, ZHANG Wenjun ”Neural

Networks Based Parallel Viterbi Decoder by

Hybrid Design” Department of Electronic

Engineering, Shanghai Jiaotong University.

[13]. C. B. Shung, H-D. Lin, R. Cypher, P. H. Siege1

and H. K. Thapar, ”Area-efficient architecture for

the Viterbi algorithm Part 11: Applications,” IEEE

Trans. Commun.,vol. 41, pp. 802-807, May 1993.

[14]. Shuji Kubota, Shuzo Kato, Member, IEEE, and

Tsunehachi Ishitani, ”Novel Viterbi Decoder VLSI

Implementation and its Performance.”

IEEE Transactions on Communications, VOL. 41,

NO. 8, AUGUST 1993.

[15]. Stevan M. Berber, Paul J. Secker, Zoran A.

Salcic, ”Theory and application of neural networks

for 1/n rate convolutional decoders”,School of

Engineering, The Department of Electrical and

Computer Engineering, The University of

Auckland,New Zealand.14 July 2005

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 167

