
 

  

FPGA Implementation of Viterbi Decoder 
 

HEMA.S, SURESH BABU.V, RAMESH P 

Dept of ECE, College of Engineering Trivandrum  

Kerala University  

Trivandrum, Kerala.  

INDIA 

  
 

 

Abstract: - Convolutional encoding with Viterbi decoding is a powerful method for forward error correction. It has 

been widely deployed in many wireless communication systems to improve the limited capacity of the 

communication channels. The Viterbi algorithm, which is the most extensively employed decoding algorithm for 

convolutional codes. In this paper, we present a field-programmable gate array implementation of Viterbi Decoder 

with a constraint length of 11 and a code rate of 1/3. It shows that the larger the constraint length used in a 

convolutional encoding process, the more powerful the code produced. 
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1 Introduction 

 
With the growing use of digital communication, there 

has been an increased interest in high-speed Viterbi 

decoder design within a single chip. Advanced field 

programmable gate array (FPGA) technologies and well-

developed electronic design automatic (EDA) tools have 

made it possible to realize a Viterbi decoder with the 

throughput at the order of Giga-bit per second, without 

using off-chip processor(s) or memory. The motivation 

of this thesis is to use VHDL, Synopsys synthesis and 

simulation tools to realize a Viterbi decoder having 

constraint length 11 targeting Xilinx FPGA 

technology.[5] 

 

 The Viterbi algorithm develops as an asymptotically 

optimal decoding algorithm for convolutional codes. It 

is nowadays commonly using for decoding block codes. 

Viterbi Decoding has the advantage that it has a fixed 

decoding time. It is well suited to hardware decoder 

implementation.Viterbi decoding of convolutional codes 
found to be efficient and robust. Although the viterbi 

algorithm is, simple it requires O(2
n-k

) words of 

memory, where n is the length of the code words and k 

is the message length, so that n k− is the number of 

appended parity bits. In practical situations, it is 

desirable to select codes with the highest minimum 

Hamming distance that decodes within a specified time 

and an increased minimum Hamming distance mind  

implies an increased number of parity bits. Our viterbi 

decoder necessarily distributes the memory required 

evenly among processing elements [1]. 

 

 2.  Convolutional Code 

2.1 Convolutional Encoding 

 Convolutional code is a type of error-correcting code 

in which each (n≥m) m-bit information symbol (each m-

bit string) to be encoded is transformed into an n-bit 

symbol, where m/n is the code rate (n≥m)  and  the 
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transformation is a function of the last k information 

symbols, where K is the constraint length of the code. 

To convolutionally encode data, start with k memory 

registers, each holding 1 input bit. Unless otherwise 

specified, all memory registers start with a value of 

0.The encoder has n modulo-2 adders, and n generator 

polynomials—one for each adder (see figure1).An input 

bit m1 is fed into the leftmost register. Using the 

generator polynomials and the existing values in the 

remaining registers, the encoder outputs n bits [1]. 

 

 
 

Figure 1: The rate ½ Convolutional encoder 

2.2 Viterbi Algorithm 

A. J. Viterbi proposed an algorithm as an 

‘asymptotically optimum’ approach to the decoding of 

convolutional codes in memory-less noise. The Viterbi 

algorithm (VA) is knows as a maximum likelihood 

(ML)-decoding algorithm for convolutional codes. 

Maximum likelihood decoding means finding the 

code branch in the code trellis that was most likely to be 

transmitted. Therefore, maximum likelihood decoding is 

based on calculating the hamming distances for each 

branch forming encode word. The most likely path 

through the trellis will maximize this metric.[7] 

Viterbi algorithm performs ML decoding by reducing 

its complexity. It eliminates least likely trellis path at 

each transmission stage and reduce decoding complexity 

with early rejection of unlike pathes.Viterbi algorithm 

gets its efficiency via concentrating on survival paths of 

the trellis. The Viterbi algorithm is an optimum 

algorithm for estimating the state sequence of a finite 

state process, given a set of noisy observations.[2] 

The implementation of the VA consists of three parts: 

branch metric computation, path metric updating, and 

survivor sequence generation. The path metric 

computation unit computes a number of recursive 

equations. In a Viterbi decoder (VD) for an N-state 

convolutional code, N recursive equations are computed 

at each time step (N = 2k-1, k= constraint length). [12] 

Existing high-speed architectures use one processor per 

recursion equation. The main drawback of these Viterbi 

Decoders is that they are very expensive in terms of chip 

area. In current implementations, at least a single chip is 

dedicated to the hardware realization of the Viterbi 

decoding algorithm The novel scheduling scheme allows 

cutting back chip area dramatically with almost no loss 

in computation speed.[15] 

 

3. Viterbi Decoder 
 

A viterbi decoder uses the Viterbi algorithm for 

decoding a bitstream that has been encoded using 

Forward error correction based on a code. There are 

other algorithms for decoding a convolutionally encoded 

stream (for example, the Fano algorithm). The Viterbi 

algorithm is the most resource consuming, but it does 

the maximum likelihood decoding. Figure 2 shows the 

block diagram of viterbi decoder 

It consists of the following modules: [7] 

     Branch Metrics, ACS, register exchange, 

maximum path metric selection, and output register 

selection.  

 

Figure:2  Block Diagram of Viterbi Decoder 

3.1. Branch Metrics 

The branch metric computation block compares the 

received code symbol with the expected code symbol 

and counts the number of differing bits .Figure 3 shows 

the block diagram of branch metrics[7] 

 

Figure: 3   Branch Metrics of viterbi decoder 

3.2. Add-Compare-Select (ACS) 
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The two adders compute the partial path metric of 

each branch, the comparator compares the two partial 

metrics, and the selector selects an appropriate branch. 

The new partial path metric updates the state metric of 

state, and the survivor path-recording block records the 

survivor path.[7] 

Figure 4 shows the block diagram of ACS block 

 

Figure:4 ACS block 

3.3. Path Metric Calculation and Storage 

 The ACS circuit consisting of adders, a comparator, a 

selector, and several registers calculates the path metric 

of each convolutional code state. The number of “states” 

N, of a convolutional encoder which generates n 

encoded bits is a function of the constraint length K and 

input bits b .The path metric calculations just assigned 

the measurement functions to each state, but the actual 

Viterbi decisions on encoder states is based on a 

traceback operation to find the path of states. The 

important characteristic is that if every state from a 

current time is follow backwards through its maximum 

likelihood path, all of the paths converge at a point 

somewhere previous in time. This is how traceback 

decisively determines the state of the encoder at a given 

time, by showing that there is no better choice for an 

encoder state given the global maximum likelihood 

path.[6] 

3.4 .Register-exchange and Traceback 

The register-exchange approach assigns a register to 

each state. The register records the decoded output 

sequence along the path starting from the initial state to 

the final state, which is same as the initial state. This 

approach eliminates the need to traceback, since the 

register of the final state contains the decoded output 

sequence. Hence, the approach may offer a high-speed 

operation, but it is not power efficient due to the need to 

copy all the registers in a stage to the next stage.[10] 

The other approach called traceback records the 

survivor branch of each state. It is possible to traceback 

the survivor path provided the survivor branch of each 

state is known. While following the survivor path, the 

decoded output bit is ‘0’ (‘1’) whenever it encounters an 

even (odd) state. A flip-flop is assign to each state to 

store the survivor branch and the flip-flop records ‘1’ 

(‘0’) if the survivor branch is the upper (lower) path. [6] 

3.4.1) Traceback read (tb) 

There are three types of operations performed inside a 

TB decoder: 

This is one of the two read operations and consists of 

reading a bit and interpreting this bit in conjunction with 

the present state number as a pointer that indicates the 

previous state number (i.e. state number of the 

predecessor) .[4] 

 

3.4.2) Decode read (dc) 

This operation proceeds in exactly the same fashion as 

the traceback operation, but operates on older data, with 

the state number of the first decode read in a memory 

bank being determined by the previously completed 

traceback. Pointer values from this operation are the 

decoded values and are sent to the bit-order reversing 

circuit. 

3.4.3) Writing new data (wr) 

The decisions made by the ACS write into locations 

corresponding to the states. The write pointer advances 

forward as ACS operations move from one stage to the 

next in the trellis, and data are written to locations just 

freed by the decode read operation . 

3.4.5) Selective Update and Shift Update 

It is possible to form registers by collecting the flip-

flops in the vertical direction or in the horizontal 

direction. When a register is formed in vertical 

direction, it is referred to as “selective update”. When a 

register is formed in horizontal direction, it is referred to 

as “shift update”. In selective update, the survivor path 

information is filling from the left register to the right 

register as the time progresses. In contrast, survivor path 

information is applied to the least significant bits of all 

the registers in “shift update”. Then all the registers 

perform a shift left operation. Hence, each register in the 

shift update method fills in survivor path information 

from the least significant bit toward the most significant 

bit.[9] 

3.4.6) Survivor Path Memory 

To implement the survivor path memory architecture, 

three types of path memory management schemes are 

commonly used: register-exchange (RE), trace-back 

(TB), and RE-TB-combined. The RE approach is 

suitable for fast decoders, but occupies large silicon real 

estate and consumes lots of power. On the other hand, 
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the TB path memory usually consumes less power, but is 

slower than its RE counterpart, or requires a clock 

rate higher than the decoding throughput. The RE-

TB-combined approach, is a good alternative to the 

RE approach for high-speed applications. [7] 

 

4. The Field Programmable Gate Array 

(FPGA) 
A Field Programmable Gate Array (FPGA) is a 

semiconductor device containing programmable logic 

components and programmable interconnects. The 

programmable logic components can be programmed to 

duplicate the functionality of basic logic gates such as 

AND, OR, XOR, NOT or more complex combinational 

functions such as decoders or simple math functions. In 

most FPGAs, these programmable logic components (or 

logic blocks, in FPGA parlance) also include memory 

elements, which may be simple flip-flops or more 

complete blocks of memories.  Each process is assigned 

to a different block of the FPGA and operates 

independently. A shared register between the processors 

implements the arcs, which represent the transmission of 

the weights and paths for each state to another 

processor. All systems were implementing in behavioral 

VHDL.A synthesis tool is used to construct the RTL 

level VHDL for the decoders. This synthesized unit is  

then simulated using a commercial simulation tool for 

VHDL.In VHDL the initial conditions such as the 

location of the weights and paths needed to update a 

state are readily coded and so don’t need to be 

calculated  for each cycle of the decoding process. The 

received message is fan out into all the processors a bit 

at a time and this is the logical clock for the machine. 

On receiving each input bit, each processor reads the 

shared registers, updates the weights and paths and 

writes the results to the shared registers. [11] 

FPGAs originally began as competitors to CPLDs and 

competed in a similar space, that of glue logic for PCBs. 

As their size, capabilities and speed increase, they began 

to take over larger and larger functions to the state 

where they are now market as competitors for full 

systems on chips. They now find applications in any 

area or algorithm that can make use of the massive 

parallelism offered by their architecture.[2] 

The typical basic architecture consists of an array of 

configurable logic blocks (CLBs) and routing channels. 

Multiple I/O pads may fit into the height of one row or 

the width of one column. Generally, all the routing 

channels have the same width (number of wires). 

 

An application circuit must be map into an FPGA 

with adequate resources. The typical basic architecture 

consists of an array of configurable logic blocks (CLBs) 

and routing channels. Multiple I/O pads may fit into the 

height of one row or the width of one column. 

Generally, all the routing channels have the same width 

(number of wires). [13] 

FPGAs are an extremely valuable tool in learning 

VLSI design. While the traditional techniques of full- 

and semi-custom design certainly have their places for 

analog, high performance or complex applications, the 

prospect of putting “their” chip to the decisive test of a 

real hardware environment motivates students 

tremendously. [10] 

To define the behavior of the FPGA the user provides 

a hardware description language (HDL) or a schematic 

design. Common HDLs are VHDL and Verilog. Then, 

using an electronic design automation tool, a 

technology-mapped netlist generates. The netlist can 

then be fitted to the actual FPGA architecture using a 

process called place-and-route, usually performed by the 

FPGA Company’s proprietary place-and-route software. 

The user will validate the map, place and route results 

via timing analysis, simulation, and other verification 

methodologies. Once the design and validation process 

is complete, the binary file generated (also using the 

FPGA company's proprietary software) is used to 

(re)configure the FPGA device. Figure: 5 show the 

design flow of FPGA. [2] 
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Figure: 5 Design flow of FPGA 

To simplify the design of complex systems in FPGAs, 

there exist libraries of predefined complex functions and 

circuits that have been tested and optimized to speed up 

the design process. These predefined circuits are called 

IP cores, and are available from FPGA vendors and 

third-party IP suppliers (rarely free and typically 

released under proprietary licenses). 

In a typical design flow, an FPGA application 

developer will simulate the design at multiple stages 

throughout the design process. Initially the RTL 

description in VHDL or Verilog is simulated by creating 

test benches to stimulate the system and observe results. 

Then, after the synthesis engine has mapped the design 

to a netlist, the netlist is translated to a gate level 

description where simulation is repeated to confirm the 

synthesis proceeded without errors. Finally, the design is 

laid out in the FPGA at which point propagation delays 

can be added and the simulation run again with these 

values back annotated onto the netlist. The typical 

FPGA logic block consists of a 4-input lookup table 

(LUT), and a flip-flop, as shown in Figure 6.[3] 

 

 
 

 

Figure:6   Logic Block of FPGA 

 

5. Conclusion 
 

In this paper, a Viterbi algorithm based on the 

strongly connected trellis decoding of binary 

convolutional codes has been presented. The use of 

error-correcting codes has proven to be an effective way 

to overcome data corruption in digital communication 

channels. The adaptive Viterbi decoders are modeled 

using VHDL, and post synthesized by Xilinx Design 

Manager FPGA logic. The design simulations have been 

done based on both the VHDL codes at RTL and the 

VHDL codes generated by Xilinx design manager after 

post synthesis. 

We can implement a higher performance Viterbi 

decoder with such as pipelining or interleaving. So in 

the future, with Pipeline or interleave the ACS and the 

trace-back and output decode block, we can make it 

better. 
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