
Design of Chebyshev FIR Filter Based On Antenna Theory
Approach

SUNIL BHOOSHAN
Jaypee University of Information Technology

ECE Department
Waknaghat, Kandaghat, Solan

H.P. 173 215
INDIA

sunil.bhooshan@juit.ac.in

VINAY KUMAR
Jaypee University of Information Technology

ECE Department
Waknaghat, Kandaghat, Solan

H.P. 173 215
INDIA

vinay.kumar@juit.ac.in

Abstract: In this paper we will present a novel method for designing the Chebyshev FIR filter which will
take help of the techniques used in antenna theory.
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1 Introduction
In this paper we will present an approach to
realize FIR filters using Chebyshev Polynomials.
Chebyshev polynomials play a vital role in
antenna as well as in signal processing theory.
The FIR filter design has also been disscussed
previously [2-10], these papers discuss approx-
imation methods, while the approach we will
discuss in this paper gives exact design of FIR
filter in Chebyshev sense. The Dolph-Chebyshev
distribution of currents feeding the elements of
a linear array comprising an antenna gives a
sharp main lobe and small side lobes all of which
have the same power level. In this paper we
will present a method by which we can design a
low-pass filter with linear phase and,
(i) A given pass band to stop band ratio,
(ii) A given pass band to stop band transition,
and to some extent
(iii) The frequency band of the pass band.

Taking the case of a linear equispaced an-
tenna array with n elements, labelled from left
to right.

|E| = |A0e j0
+A1e jψ

+A2e j2ψ
+. . .+An−2e j(n−2)ψ

+An−1e j(n−1)ψ|
(1)

ψ = βdcosφ + γ (2)

where,
|E| =is the magnitude of the far field,
β = 2π/λ,

λ is the free space wavelength,
d is the spacing between elements,
φ is the angle from the normal to the linear array,
γ is the progressive phase shift from left to right,
and A0,A1,A2, . . . are complex amplitudes which
are proportional to the current amplitudes.

If we substitute z = e jψ and write Equation
(1) as

H(z) = A0+A1z+A2z2
+ . . .+An−2zn−2

+ zn−1 (3)

This equation represents an FIR filter. Where,
H(z) is impulse response of the filter with z = e jω,
A0,A1,A2, . . . represents amplitudes at the corre-
sponding frequencies.

Now we will design our FIR filter based on
the antenna design [1].
The Chebyshev polynomial is given by

Tm(x) = cos(mcos−1x) 0 < |x| < 1
Tm(x) = cosh(mcosh−1x) 1 < |x| (4)

Following the steps outlined in [1] we can
state that

b = 10(attenuation in dB)/20 (5)

ωs = 2cos−1
[

1/
{

cosh(1/mcosh−1b)
}]

(6)
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ωp = 2cos−1

















cosh
{

(1/m)cosh−1(b/
√

2)
}

cosh(1/mcosh−1b)

















(7)

where,
m is the order of the filter,
b is the absolute value of attenuation in the stop
band,
ωs is the stopband frequency,
ωp is the passband frequency.

The manner in which we use Equations (5)
to (7) is as follows:
(a) Use Equation (5) to obtain ’b’ for a desired
level of stop band,
(b) Calculate ωs and ωp from Equations (6) and
(7).

The location of zeros, ωm, on unit circle can
be calculated by the following equation ([1])

ωm = 2cos−1
{

cos(ωk)/cosh(1/mcosh−1b)
}

(8)

Where, ωk = (2k − 1)π/2m,
and k = 0 . . .m.

Using the relation zm = e jwm , we can write
Equation (3) as follows

H(z) = (z − z1)(z − z2) . . . (z − zm) (9)

where,
z1, z2, . . . are location of zeros,
H(z) is the frequency response in z-transform do-
main.
Replacing z by e jω and zm’s by e jωm ’s in Equation
(9)

H(z) = (e jω − e jω1)(e jω − e jω2) . . . (e jω − e jωm) (10)

2 Filter Design
Now let us consider a design problem.
Let us design a Chebyshev FIR filter of order
6 with side bands 40dB down from the pass band.

Following the design steps outlined from
Equation (5) to Equation (7) we can say that
m=6,
b = 1040/20

= 100
from Equation (6) and Equation (7) we can
calculate
ωp = 0.5622

ωs = 1.5732
the values of the ωm

′s can be calculated by using
Equation (8)
ω1 = 1.64;ω2 = 2.0958;ω3 = 2.7739;ω4 =

3.5093;ω5 = 4.1874;ω6 = 4.6431
We can write H(z) as

H(z) = (z − e j1.64)(z − e j2.0958)(z − e j2.7739)(z −
e j3.5093)(z − e j4.1874)(z − e j4.6431)
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Figure 1: Magnitude Response of 6th Order FIR
Filter
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Figure 2: Magnitude response of 6th order FIR
filter in dB

The dark continuous lines (α = 1) in Figures
(1), (2),and (3) show the magnitude response,
magnitude response in dB, and phase response
of above mentioned FIR filter respectively. While
Figures (4) and (5) represents the magnitude
response of 4th and 20th order FIR filters respec-
tively, with side band 40dB down and they are
designed following the above mentioned proce-
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Figure 3: Phase Response of 6th order FIR filter

dure. Figures (6) and (7) show the magnitude
responses in dB.

As it is clear from the Figures (1), (4), and (5)
that the width of the pass band decreases as the
order of filter increases, and the transition band
becomes more steep. The dark continuous lines
of magnitude response in dB curves shown in
Figures (2), (6), and (7) make it more clear.

Figure (3) shows the phase response of the
6th order FIR filter designed above, which clearly
shows its linear nature. The phase response of
4th and 20th order filter will also be linear and it
can be varified easily by following the same steps.
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Figure 4: Magnitude response of 4th order filter
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Figure 5: Magnitude response of 20th order FIR
filter
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Figure 6: Magnitude response of 4th order filter
in dB

3 The Modified Chebyshev Filter
Now, we can introduce a new parameter to
change the filter characteristics. In the origi-
nal Chebyshev polynomial (Equation (4)) we will
multiply a new parameter ′α′ with parameter ’x’.
Thus, now Equation (4) becomes

Tm(αx) = cos(mcos−1αx) 0 < |x| < 1
Tm(αx) = cosh(mcosh−1αx) 1 < |x| (11)

Then ωs and ωp are given by the equations:

ωs = 2cos−1
[

1/
{

cosh(1/mcosh−1b)
}]

(12)

ωp = 2cos−1
[

cosh
{

(1/m)cosh−1(b/
√

2)
}

/
{

cosh(1/mcosh−1b)
}]

(13)
When we will multiply ’x’ with ’α’, it will make
change in ωs only and ωp will remain same, as
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Figure 7: Magnitude response of 20th order filter
in dB

’α’ will be present in both numerator as well as
denominator.
So, now ωs will be

ωs = 2cos−1
[

1/α
{

cosh(1/mcosh−1b)
}]

(14)

and ωp will be same as in Equation (13).
We can calculate the location of zeros by

ωm = 2cos−1
[

cos(ωk)/
{

α(cosh(1/mcosh−1b))
}]

(15)
Where,
ωk = (2k − 1)π/2m,
and k=0. . . m.
Now, we can write H(z) as

H(z) = (e jω − e jω1)(e jω − e jω2) . . . (e jω − e jωm) (16)

with new values of ωm’s calculated using Equa-
tion (15)

Plotting the magnitude response of the de-
sign problem for 6th order again with the new
parameter taken into account, we get the plots
shown in Figure (1), ”dash followed by dot” and
”dots” for α > 1 and α < 1 respectively. It is
evident from the figure that the bandwidth of
our filter is increased in case of α > 1. Figure
(2) shows that the side bands are further below
than they were with α = 1. When α < 1 we
can easily conclude from Figure (1) and Figure
(2) that bandwidth is reduced with an increase
in the stopband level. Figure (3) shows that our
modified Chebyshev FIR filter has linear phase
characteristics, and on the other hand it confirms
that the filter linear phase even after introducing
the new parameter α.

4 Conclusion
In conclusion we can say that
(a) We have described two new low pass filters
which are of the Chebyshev type and whose stop-
band levels can be designed by us.
(b) We can further change the passband frequency
to some extent by using the parameter ′α′.
(c) The phase response of the original and modi-
fied filters are linear in nature.
(d) To design a band-pass filter, band reject, ar
high pass filter wecan use the standard frequency
transformations.
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