
A Knowledge-Based Genetic Algorithm for the Job Shop Scheduling
Problem

HUNG-PIN CHIU

Department of Information Management
Nanhua University

32,Chung Keng Li, Dalin, Chia-Yi , 622 Taiwan, R.O.C.

 KUN-LIN HSIEH

Department of Information Management
National Taitung University

684, sec.1, Chung-Hua Rd., Taitung, 950 Taiwan, R.O.C.

YI-TSUNG TANG

Department of Computer Science and Information Engineering
National Cheng Kung University

1, University Road, Tainan City 701, Taiwan, R. O. C.

WAN-JUNG CHIEN

Department of Information Management
Nanhua University

32,Chung Keng Li, Dalin, Chia-Yi , 622 Taiwan, R.O.C.

Abstract: - This study presents a novel use of attribution for the extraction of knowledge from job shop
scheduling problem. Our algorithm improves the traditional GA and using knowledge to keep the quality of
solution. Based on the knowledge, the search space will be leaded to a better search space. In addition, this study
uses mutation to do local search and refresh the knowledge and population when the solution fall into local
minimum. Based on those methods, our algorithm will have the intensification and diversification. Those can
make the algorithm have good convergence and leap for the search space to find the better solution. The
experiment results show that algorithm steadily and can find the approximate optimal solution. And the
knowledge is useful in provide the gene selection information.

Key-Words: - hybrid GA, knowledge, Job-shop scheduling problem.

1 Introduction
Scheduling problems exist everywhere in real-world
circumstance, especially in the flexible
manufacturing world. Many people pay close
attention to it because poor scheduling can lead to
higher cost for manufacturers and consequently
higher prices for customer. Therefore, if we want to
have the better efficiency, we must have a good
schedule to promote the efficiency and reduce the
time in the manufacturing process. Nevertheless,
scheduling problems are categorized into different
groups in the different machine environment (e.g.,
single machine problems, parallel machine problems,

job shop problems, etc,). In those groups, job shop
problem (JSP) emphasizes the order of job in the
every machine. In the other word, it considers the
order of every operator of job but not prescribes
which machine is the first machine for the job. As a
result, JSP is more complicated than other scheduling
problem. Therefore, this study has focused on the JSP
problem.

JSP is among the hardest combinational
optimization problem. Most of the researches used
different approaches to solved JSP such as: Tabu
search [6, 12], simulated annealing [15, 19], ant
colony system [1], neural network algorithm [2],

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 81

genetic algorithm (GA) [5, 7, 13, 20], and others.
GA-based approach was used to solve JSP problem
considerably in recent years among these studying.
Cheng, Gen, and Tsujimura [17] have given a
detailed sort survey on papers using GA to solve
classical JSP in Part surveyⅠ . Nevertheless, using
traditional GA can’t give consideration convergence
rate, quality of solution and stability of search
process. On the other hand, this algorithm can’t
balance intensification and diversification. Ignore the
intensification will spend much time to search. And
disregard the diversification will fall into local
minimum easily. So many researches tried modify
GA with other algorithm. Cheng [18] discuss various
hybrid GA to solve JSP.

In recent years, many researches wanted to
improve intensification or diversification. Mattfeld
and Bierwirth [3] used a heuristic reduction of search
space which can help GA to find better solution in a
shorter computation time. Goncalves, Mendes, and
Resende [11] constructed the scheduling to generate
parameterized active schedules and used a local
search heuristic to improve the solution in
evolutionary process of GA. To sum up, there studies
focused on improving the search space. Therefore,
better solutions could be expected but the quality of
solutions could not be guarded. Watanabe, Ida and
Gen [14] use GA with modified crossover operator
for JSP problem. It made use of random number to
decide what gene must be reserved for children
chromosome. If the offspring do not conform to
constrain the JSP problem, it will be regulate by some
rules. This paper changed the traditional crossover
operator and considered influence of each gene.
Nevertheless, using the random number to decide
which gene can be retained to offspring did not
exclude random effect.

In order to keep the quality of solutions, some
studies used the better chromosome to replace the bad
chromosome. This method is accomplished by first
coping some of the best individuals from each
generation to the next, in what is called an elitist
strategy [7]. Chang, Hsieh and Hsiao [16] reserved
some better chromosomes and replaced some bad
chromosomes in each generation. Those methods
supposed that if there is a better population, it will the
easy to produce the better offspring in crossover
operator. However, it was not exactly so and it may
easy to fall into local minimum. For this reason, we
propose the idea that if we can evaluate the fitness for
genes and choose the better gene to generate the
offspring which may lead to a better solution. And if
reserving the better chromosomes can help the
quality of solution, those better chromosomes may be

have useful information for finding the better
solution.

Based on those ideas, we will collect some best
solutions by GA to sort some knowledge and use it to
evaluate the fitness for gene. And then make use of
concluded result to design the suitable crossover
operator for JSP problem. Hope to use this idea to
speed up the convergence and improve the solution
for JSP problem. Beside, we use mutation to do the
local search, hope this can keep the diversification
and avoid intensification overly. We will describe the
design and the logic behind this method. And use the
experiment to demonstrate the feasibility. This
research is a new attempt and which can apply to
other optimization problem. Therefore, it is a very
important problem and merit discussion about it.

2 Literature review

2.1 Job-shop scheduling problem (JSP)
JSP problem has been described as follows [4]: there
are m different jobs and n different machines to be
scheduled. Each job is composed of a set of operation
and the operation order on each machine is
prespecified. The required machine and the fixed
processing time characterize each operation. A
schedule is an allocation of the operations to time
intervals on the machines. According to the allocated
operation sequences in a schedule, the time required
to complete all jobs is called makespan of the
schedule. Table 1 shows a 3×3 JSP problem and
concluded operations, job number, machine number,
process time. For example, when we observe J1 and
O1, it means that operation 1 of job 1 be arranged for
machine 2 (M2) and spend 2 time units.

Table 1. Example of 3×3 JSP problem

2.2 Genetic Algorithm for Job-shop

Scheduling Problem
Genetic algorithm (GA) is one of the stochastic
search algorithms based on biological evolution. In
order to solve a clearly defined problem and an
offspring represented the candidate of solutions. GA
is according to crossover and mutation operators with
their probabilities to produce a set of offspring

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 82

chromosomes. As we know, GA likes an over and
over process, an iteration is called a generation. A run
means the whole set of generations. We try to find
one or more highly fit chromosomes.
Recently, there have more and more papers used
hybrid GA to solve optimum problem. Because of
GA provides quite simple structure, process and it
has strong abilities of solving and searching.
Furthermore, GA searches multiple points in search
space of population by evolution of generations and
characteristic of search randomly. The abilities can
avoid GA dropping in the local optimum and toward
the global optimum. Whitley [3] introduced
designing GA has two important issues: selection
pressure and population diversity. Selection pressure
leads GA to exploit information from the fitter
individuals and produces more superior offspring
iteratively. The diversity in GA is concerned about
the population, which contains a certain number of
encoded individuals for exploration. Therefore, we
must to find a good tradeoff between exploration and
exploitation consideration of both convergence speed
and optimized solution quality. Masato etc. [10]
proposed the modified GA with search area
adaptation (mGSA) for solving JSP that does not
need such crossover operator in GSA. Goncalves etc.
[7] presented a hybrid genetic algorithm for the
job-shop scheduling problem. It used the
chromosome representation of the problem is based
on random keys. The scheduled used a priority rule in
which are defined by GA.

3 The proposed modified TGA
Our algorithm was modified GA’s deficiency. We
use some better solutions (chromosomes) to collect
knowledge and designing a eugenic crossover.
However, those better solutions just bring the limited
information. We can understand the machine number
and processing time for this operation, but we can not
collect the integrate information. Therefore, we
design the operation table to classify those operations
before collecting knowledge. Use knowledge to
decide the fitness of gene in crossover operator and
adjust the chromosome.

Hsieh and Hsiao [16] reserved some better
chromosomes and replace some bad chromosome in
each generation and improve the solution of GA.
According to this result, we can assume that those
better chromosomes may be included some useful
information for improve solution. But GA can not
demonstrate repeat-ability or provide an explanation
of how a solution is developed. For this reason, we
can’t induce information from the solutions of GA.

Therefore, we will use the method which was brought
up by Koonce and Tsai [4]. This method used
attributions to induce information from the solution
of GA.

Better solutions (chromosome) may be have some
information and can help us to find optimal solution.
Therefore, we could take advantage of those better
solutions to collect knowledge. The KGA process
was described as following:
Step1: Create initial population.
 We used random number to produce some
chromosomes.
Step2: Compute fitness value.
 Transform the makespan into the fitness value. If the
chromosome has lesser makespan, it will have the
higher fitness value.
Step3: Generate new generation.
 When we have initial population and fitness value,
we will use those data to do the next step.
Step4: Select population.
 We use the roulette wheel method to select two
chromosomes. This step is the same with GA.
Step5: Crossover.
 In the blended crossover, we must select which
crossover operator by generation number. If the child
was not better than one of parents, we must do the
mutation.
Step6: Mutate.
 In the forced mutation, we will mutate the child
which is not better than parents in crossover.
Step7: Meet the population size or not.
 If this generation has enough population, this
generation will be over.
Step8: Compute fitness value.
 In this process, we will compute fitness value of new
population and using new population in the next
generation.
Step9: Reach the generation number or not.
 If the KGA process has enough generation number,
the algorithm will be over. Otherwise, continuing the
KGA and determine the solution fall into local
minimum or not.
Step10: If the solution fall into local minimum or not.
 If the best solution in each generation had not change
several times, we will determine the solution has fall
into local minimum. When the solution does not fall
into local minimum, we will collect the better
solution from this generation. The collecting of the
better solution is the same the part 1. If the solution is
better than one of the better solution which was
retained, we will retain this solution until the solution
fall into local minimum. When the solution was fells
into local minimum, we will collect new knowledge
and refresh knowledge by new knowledge.
Step11: Refresh population

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 83

 When the solution fell into local minimum, we must
refresh knowledge. And this situation was
represented this search space that can’t find the better
solution. So we must refresh the population and
search other space again. In the refresh population
process, we will sort the original population by
fitness value and selecting the first 20% population to
new population. The other new population was
produced by random number.

4 Experiential results
The following experiments showed the 10×10 JSP
benchmarking problems solving only for the purpose
of illustrating the computational procedure discussed
above. In this experiment, we use KGA for the
10×10 benchmark problem. This problem was
generated by Fisher and Thompson. Lawler et al. [6]
report that within 6000s when applying a
deterministic local search to this problem and find
more than 9000 local optima. It is perceived that this
problem has the difficult to find the optimal solution.
Besides, it was proved that the optimal makespan is
930. We can use this result to determine whether the
solution by KGA is good or not. Figure 1 shows the
result by GA and KGA. In this Figure 1, the best
solution by KGA is 936 and by GA is 1053. And it
just spent 440 generations to find the makespan 964.
This result proved that KGA had faster convergence
than GA and its result better than GA. Table 2 shows
the progress of the 10×10 benchmark instance.
According to this table, we can know that we did not
find the optimal makespan, but the solution by our
algorithm is very close the optimal makespan. Figure
2 shows the makespan for KGA for 100 time trial.
We can find that most of the solutions fall into the
range between 960 and 969. This result can represent
our algorithm is steady. And the best solution by
KGA is 936. This solution is not the optimum
solution, but it is close the optimum solution. For
those result, we can prove KGA is useful and using
the knowledge can improve the quality of solution.

700

900

1100

1300

1 27 16
1

23
5

34
0

64
5

11
56

30
00

70
00

Generation

M
ak
es
pa
n

GA

KGA

Figure 1. The makespan of the 10×10 benchmark

problem

Table 2. Progress of the 10×10 benchmark instance

0
10

20
30

40
50

60

930
-9 3

9

950
-9 5

9

970
-9 7

9

990
-9 9

9

101
0 -1

019

103
0 -1

039

105
0 -1

059

107
0 -1

079

109
0 -1

099

111
0 -1

119

113
0 -1

139

115
0 -1

159

Makespan

T
im

es

GA

KGA

Figure 2. The makespan for KGA (run 100 times)

5 Conclusion Remarks
According to those experiments, we can obtain some
conclusions. The first, the knowledge is useful. In the
eugenic crossover, the knowledge was used to
evaluate the fitness-gene and retained the higher
fitness-gene in offspring. This method can raise the
quality of offspring and produce better offspring.
Based on this result, the knowledge is useful in
provide the gene selection information. But this
method will make the algorithm fall into local
minimum easily. This is because when we can find
the better solution than GA, the knowledge becomes
useless. Therefore, the knowledge must be renewed
in KGA process. The second, this algorithm can raise
the convergence. Because the algorithm used the
knowledge to improve the crossover, it will be leaded
to search the specific space. For this reason, the
method could search out the better offspring in short
time and raised the convergence. The third, the
algorithm can balance the intensification and
diversification. This algorithm used the knowledge to
search special space and improve the convergence.
Therefore, this method achieves the intensification
which makes the algorithm to search the space where
better solution exists.

References:

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 84

[1] A. Colorni, M. Dorigo, V. Maniezzo and M.
Trubian, “Ant system for Job-shop Scheduling”,
Statistics and Computer Science, vol. 34,
pp.39-53, 1994.

[2] A. S. Jain and S. Meeran, “Job-Shop Scheduling
Using Neural Networks”, International Journal of
Production Research, vol.36, No.5,
pp.1249-1272, 1998.

[3] C. Dirk Mattfeld and Christian Bierwirth, “An
efficient genetic algorithm for job shop
scheduling with tardiness objectives”, European
journal of operational research, vol. 155,
pp.616-630, 2004.

[4] D.A. Koonce and S.-C. Tsai, “Using data mining
to find patterns in genetic algorithm solutions to a
job chop schedule”, Computers & Industrial
engineering, vol.38, pp.361-374, 2000.

[5] E. Falkenauer, S. Bouffoix, “A genetic algorithm
for job shop”, Proc. of the 1991 IEEE
international Conference on Robotics and
Automution, 1991.

[6] E. Nowicki, C. Smutnicki, “A Fast Taboo Search
Algorithm: for the Job Shop Problem”,
Managemenr Science, vol. 42, pp. 797-813,
1996.

[7] D.E. Goldberg, “Genetic Algorithms in Search”,
Optimization, and Machine Learning,
Addison-Wesley, USA, 1989.

[8] E.L. Lawler, J.K. Lenstra and Rinnooy Kan
etc., ”Sequencing and scheduling: Algorithms
and complexity”, Hardbook in operations
research and management, 1993.

[9] G. Syswerda, “A study of reproduction in
generational and steady-state genetic algorithms”,
foundations of Genetic Algorithms, pp. 94-101,
1991.

[10]J. Carlier and E. Pinson, “An algorithm for
solving the job shop problem”, Management
science, vol. 35, pp.164-176, 1989

[11]J. F. Goncalves, M. Mendes, and Maurício G.C.
resende, “A hybrid genetic algorithm for the job
shop scheduling problem”, European journal of
operational research, vol. 167, pp.77-95, 2005.

[12]K. Morikawa, T. Furuhashi, Y. Uchikawa.,
“Single Populated Genetic Algorithm and its
Application to Job-shop Scheduling”, Proc. of
Industrial Electronics, Control, Instrumentation,
and Automation on Power Electronics and
Motion Control, pp. 1014-1019, 1992.

[13]L. Davis, “Applying adaptive algorithms to
epistatic domains”, In Proc. of the Inter. Joint
Con5 on Artificial Intelligence, pp. 162-164,
1985.

[14]M. Watanbe, K. Ida, and M. Gen, “A genetic
algorithm with modified crossover operator and
search area adaptation for the job-shop
scheduling problem”, Computers & Industrial
Engineering, vol. 48, pp.743-752, 2005.

[15]M. Kolonko. Some new results on simulated,
“annealing applied to the job shop scheduling
problem”, European Journal of Operational
Research, pp. 123-.136, 1999.

[16]P.C. Chang, J.C. Hsieh and C.H. Hsiao,
“Application of genetic algorithm to the
unrelated parallel machine scheduling problem”,
Chinese industrial of Industrial Engineers, vol.
19, pp.79-95, 2002.

[17]R. Cheng, M. Gen, and Y. Tsujimura. “A tutorial
survey of job-shop scheduling problems using
genetic algorithms---I:Representation”.
Computers ind. Engng vol. 30, No. 4, pp.983-997,
1996

[18]R. Cheng, M. Gen, and Y. Tsujimura. “A tutorial
survey of job-shop scheduling problems using
genetic algorithms--- II: Hybrid genetic search
strategies”. Computers & Engineering, vol. 36,
pp.343-364, 1999

[19]V.L. PJM, A. EHL, and L. JK, “Job shop
scheduling by simulated annealing”, Operations
Research, 40, pp.113-125, 1992.

[20]X. Li, W. Liu, S. Ren, and X. Wang, “A solution
of job-shop scheduling .problems based on
genetic algorithms”, IEEE Intemational
Conference on Systems, Man, and Cybernetics,
vol. 3, pp. 1823 -1828, 2001.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 85

