
Developing Agricultural B2B Processes Using Web Services

S. KARETSOS1, C. COSTOPOULOU1, O. PYROVOLAKIS2 and L. GEORGIOU3

1Informatics Laboratory, Agricultural University of Athens

75 Iera Odos str., 118 55 Athens, GREECE
 http://e-services.aua.gr

2 Hellenic Naval Academy
Terma Chatzikyriakou, 185 37 Pireaus, GREECE

3School of Informatics, University of Wales, Bangor

Dean Street Bangor Gwynedd, LL57 1UT, Bangor, UNITED KINGDOM

Abstract: - The objective of this work is to develop business-to-business processes of electronic markets using
Web services in order to facilitate the execution of these processes in different electronic markets. The main
contribution of this approach is the promotion of interoperability, just-in-time integration, and reduction of
complexity. In specific, the Cooperation, Orchestration and Semantic Mapping of Web Services (termed as
COSMOS) tool, which is an integrated development environment that enables the creation, design and
modification of executable business processes based on the Business Process Execution Language, is used for
the integration of business-to-business processes of a Virtual Agricultural Market into a fully functional Web-
based environment.

Keywords: - Web services, BPEL, Business-to-Business, Electronic Markets

1 Introduction
The evolution of Information and Communication
Technologies (ICT) brought new opportunities to
enterprises and organizations, and changed the way
of doing effectively and efficiently business. As a
result, numerous electronic markets (e-markets) are
continuously being deployed. An e-market can be
considered as an information system intended to
provide market participants with online services that
facilitate information exchange and support
activities related to business processes. It can
support the phases of information search,
negotiation, settlement, as well as, after-sales
support [1].
 A plethora of e-markets are operating in the agri-
food sector (termed in the rest of this paper as
agricultural e-markets). Agricultural e-markets can
serve as an additional trade and marketing channel
for agricultural firms (producers, processors,
retailers, agribusinesses, wholesalers, brokers etc.),
also providing them the opportunity to extend the
chain of their suppliers. It is important to note that
agricultural e-markets demonstrate different degrees
of e-commerce adoption. For instance, there are e-
markets that provide only product catalogue
information (e.g. Tomatoland.com), e-markets that
also provide transaction settlement (e.g.

Burpee.com), and more sophisticated e-markets that
support online negotiations (e.g. Agrelma.com or
XSAg.com).
 One of the major challenges in the electronic
business (e-business) community is how to
efficiently and reliably develop and maintain e-
market solutions through the integration of existing
application and systems [2]. Enterprises spent huge
amounts of economic resources trying to integrate
various non-compatible software systems and
applications in order to automate their business
processes and to collaborate with their business
partners [3]. Internet-based software components
available to their users (known as Web services)
have been gaining popularity for developing
business integration solutions. Web services are
considered to be the key to revolutionizing how
business will use the Internet to operate and interact
with one another in the future.
 In [4] it is stated that the term Web services
means different things to different people. In this
paper, we use the definition of Web services as
stated by the World Wide Web Consortium (W3C)
Web Services Architecture Group: “a Web service is
a software system designed to support interoperable
machine-to-machine interaction over a network. It
has an interface described in a machine-processable

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 161

format (specifically Web Services Description
Language - WSDL). Other systems interact with the
Web service in a manner prescribed by its
description using Simple Object Access Protocol
(SOAP) messages, typically conveyed using
Hypertext Transfer Protocol (HTTP) with an
Extensible Markup Language (XML) serialization in
conjunction with other Web-related standards” [5].
Web services are described, published, localized and
invoked over a network and provide standardized
means for service-based, language and platform
independent interoperability between different and
distributed software systems.
 WSDL, in essence, allows for the specification of
the syntax of the input and output messages of a
basic service, as well as other details needed for the
invocation of the service. WSDL does not, however,
support the specification of workflows composed of
services. In this area, the Business Process
Execution Language for Web Services (BPEL4WS
or BPEL) has the most prominent status [6]. BPEL
is an XML-based language for enabling task-sharing
across multiple enterprises using a combination of
Web services. BPEL is based on SOAP, and WSDL
and provides enterprises with an industry standard
for business process orchestration and execution.
 With Web services expected soon to be available
as digital goods in e-markets, mechanisms necessary
to facilitate their proper implementation will play a
critical role. Within this context in this paper, firstly
we present the Cooperation, Orchestration and
Semantic Mapping of Web Services (COSMOS)
tool [7]. COSMOS has been developed from one of
the paper’s authors and enables the design, creation,
and modification of executable business processes
based on BPEL. Second, we propose a set of Web
services (expressed in BPEL) that support triangular
business processes (demand, supply and transport)
of agricultural e-markets, using digital
intermediation services. In specific, a case study for
agricultural B2B processes of a Virtual Agricultural
Market (VAM) are expressed as BPEL processes,
using COSMOS. The key contribution of the
proposed approach is that Web services can be used
by any similar agricultural e-market.
 The structure of the paper is as follows: in the
next section an overview of the BPEL is given.
Afterwards, we present the COSMOS environment,
describing its basic components, architecture and
capabilities. Next, the fourth section provides an
overview of VAM and two particular business
processes are developed as Web services using
COSMOS, providing also the BPEL code. Finally,
some conclusions are given.

2 An Overview of BPEL
The concept of Web services is to use XML defined
protocols, namely the SOAP for communication, the
WSDL for description and the Universal
Description, Discovery and Integration (UDDI) of
software services over the Internet for discovery.
Figure 1 presents a generic architecture of Web
services.

Fig.1: Web Services Architecture

 Web services provide a basic one-way or request-
response mechanism that can be used by two
systems to communicate. Its standards are open,
cross platform, and fully aligned with Internet
standards and technologies. However, it is widely
recognized that the interaction of several or many
Web services is often required to create business
value. This has led to several initiatives to create
languages to express and define business processes
that coordinate Web services [8].
 BPEL is an XML based language that models the
behaviour of Web services in a business process
interaction. It is a language that models both the
orchestration and choreography aspects of a
business process (Fig. 2). Orchestration refers to the
actual execution of a business process. It controls
the flow of the various activities internal to a
business process, like invocation of Web services,
messages handling, business logic and rules. On the
other hand, choreography describes the interfaces
and the communication protocol between two or
more independent business processes. It tracks the
message sequence between Web services in an
abstract manner [9].

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 162

Fig.2: Web Services Orchestration and

Choreography

 BPEL seems to win the race for standardisation
and global acceptance against other competitive
initiatives. The main benefits of BPEL are:
• Support of state-full conversations: with the

correlation mechanism of BPEL a process
instance can be identified from parts of the data
of the messages it handles. The correlation
mechanism is responsible in deciding if an
incoming message should create a new process
instance or if it is a response to a previously
started instance.

• Managing of exceptions and transactions
integrity: the fault handlers of the BPEL allow
the catching of runtime errors and their handling.
Also the adoption of compensating transactions
makes possible the notion of long-running
transactions.

• Composition of Web services: each BPEL
process is expressed as a Web service. In that
way a process can invoke other processes and
can also be invoked from other processes [10].

• Rich collection of activities: BPEL provides a
rich collection of activities for the execution of
many actions. It provides XML elements for
Web services invocation and receive-reply, flow
decision points, loops, time and message triggers
of actions, data handling and messages inquiry.

• Incorporation of standard XML protocols: a
BPEL process defines itself and its
communication interface with the partners using
the WSDL.

 Even though BPEL is one of the most promising
and industry-adopted Web services orchestration
and choreography initiative today, it has also
limitations and weaknesses. The most important
limitations are the following:
• Complexity: even for modelling a simple process,

the BPEL definition is extremely large and
complex. Advanced workflow patterns are either
very difficult or complicated or practically
impossible to be implemented because of the
resulting complexity of the produced process and

the undocumented behaviour of some complex
flow structures.

• Not clear semantic: the semantic of BPEL for
advanced construct is not always clear. There are
semantic gaps and the result is not implicit
predictable [10].

• Lack of data transformation and manipulation
capability: the lack of data handling functionality
like integers and float numbers arithmetic and
basic strings manipulation, adds more complexity
to the business process. Instead of providing this
basic functionality, BPEL forces the designers of
a business process either to implement and
invoke Web services, which will provide the
necessary data handling functions or to use the
data manipulation capabilities of the XPath
standard with its difficulties and
restrictions[11,12].

• Supports only automatic fault handling: when a
fault occurs, the BPEL engine terminates the
process. The language provides only the
capability of the declaration of some actions to
be performed before the process instance
terminates. But in the real business world it does
not happen that way. It should be possible to let a
human actor to decide what should happen after
the occurrence of an error and if the process
should be terminated or not.

• Lack of time-out and fault-handling in <invoke>
activities: there is no provision for processes
waiting to invoke a temporary not responding
Web service. Indeed, is not even possible to
assign a fault handler for specific <invoke>
constructs [10].

• No direct support for fundamental workflow
Patterns: fundamental workflow patterns like
multi-merge, discriminator, arbitrary cycles,
interleaved parallel routing, milestone, multiple
instances with priori runtime knowledge, and
multiple instances without priori runtime
knowledge are not directly supported by BPEL
or are very difficult and error-prone to be
implemented [10].

• No direct support for all types of asynchronous
communication: publish, subscribe and broadcast
types of asynchronous communication are not
direct supported by BPEL.

• Violation of XML syntax and conventional rules:
BPEL allows theoretical use of the character ‘<’
in expressions as relational operator, but
according to the XML specification this character
is strictly illegal.

• Dependency on no-standard protocols: BPEL
depends on non standard addressing protocols.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 163

Indeed BPEL adds a non-standard extension to
WSDL in order to define essential structures.

3 The COSMOS Environment
COSMOS is an integrated development environment
for the design and creation of business processes
based on the BPEL language. The goal of COSMOS
is to provide a complete environment that would
allow the user to design, create, code, verify and
deploy a business process based on BPEL. The
concept for the COSMOS deployment stems from
the evaluation findings of BPEL and existing design
tools.
 The existing BPEL design tools are either very
developer-oriented and tied to the BPEL tags instead
of process concepts, or very manager-oriented and
general, without basic features of BPEL, like fault
handling or a real execution notion. The evaluated
tools have not business process and workflow tasks
orientation and do not provide an unambiguous,
simple, and easy way to a user without knowledge
of the BPEL language, to design and execute a
business process. They are something more than just
simple BPEL editors with a graphical environment,
and they are not business process design tools which
will help the user to think, design and implement a
business process using Web services. It is worth
noticing that none of these tools refer to basic
business processes concepts.
 The principal idea behind COSMOS software
development process is that end-user applications,
need and use some fundamental services hidden to
the user which are responsible for communicating
with the lower services provided by a platform,
environment, network or operating system. The
COSMOS development process considers that a
software application can be conceptually approached
as a combination of the following layers (Fig. 3):

Fig.3: Software Applications Conceptual

Architecture

• Context of use: this layer describes the interface

of the application and its semantics. How, where,
from whom and why, the application will be
used. An application may communicate directly
with other applications or interact with humans.
The knowledge domain in which the application
is used and the target group, are also parts of the
context of use.

• Application services: each application provides
actually some services to its users. These high
level services compose the application services
layer and usually are provided by collaborating
software components.

• Fundamental services and persistent data
structures: this layer consists of the general, low
level and reusable software services used by the
above layers in addition to the data structures
used by the application services. The
fundamental services are reusable classes and
wrappers of persistent data structures.

• Foundation: this layer is the base on which the
application is build. It is the underlying,
operating system, framework, platform, libraries,
network, and hardware. The services of this layer
are the building blocks of the above layer.

 COSMOS addresses the needs of two broad
categories of users, namely managers and
developers. In COSMOS, a business process can be
described considering two different views: the
manager view and the developer view. Each view is
realized with different capabilities. The manager
view provides a visual design environment with drag
n’ drop capability for the specification of the
activities of a business process. It is represented by
using a diagram containing information about the
business process in a graphical way. The developer
view follows the manager view. It provides
automatically generated BPEL code for the business
process as well as an XML editor for further BPEL
coding. The usage of COSMOS environment is as
simple as could be without unnecessary extra
functionalities that could confuse users. The spirit of
simplicity and formality influenced the requirements
of the application.

4 Web Services for B2B Agricultural
E-markets
 In this section, the COSMOS environment is used
for describing online agricultural B2B processes in
BPEL in order (a) to promote interoperability by
minimizing the requirements for shared
understanding among different agricultural e-

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 164

markets, (b) to enable just-in-time integration, and
(c) to reduce complexity by encapsulation. More
specifically, the case of modelling agricultural B2B
processes in VAM is discussed so as to facilitate the
execution of these processes in different agricultural
e-markets. The VAM system is an agricultural B2B
e-market that supports triangular business processes
namely, demand, supply and transport of
agricultural products, using digital intermediation
services. The market participants and their roles in
the traditional agricultural supply chain are as
follows [13]:
• Producer: is a farmer that produces agricultural

products and is interested in selling them as
quickly as possible (after harvest), without delay.

• Seller: is interested in selling agricultural
products acquired from producers. Agricultural
co-operatives, agribusinesses, food companies,
retailers, and exporters are considered to be
sellers.

• Wholesaler: is acting as an intermediary for the
provision of matching services between demand
and supply. Exporters, importers, producers,
sellers, buyers, middlemen, brokers, distributors,
agricultural co-operatives, auctioneers and
commission merchants constitute wholesalers.

• Buyer: is interested to purchase agricultural
products from producers, sellers or wholesalers,
and then to resell them to the consumers. This
participant comprises retailers, supermarkets,
agribusinesses, food companies, agricultural co-
operatives, and importers.

• Consumer: purchases agricultural products from
producers or buyers. This participant can be
distinguished as individuals or collective
consumers (e.g. restaurants, hotels, hospitals).

• Transportation firm: carries agricultural products
from producers, sellers or wholesalers to buyers.
This participant includes local and medium-sized
transport companies, and very large carriers.

 For the description of the agricultural B2B
process in VAM, the Unified Modelling Language
(UML) is used. The UML business modelling
concentrates on the business processes that will be
generally supported by the VAM system. It
describes the structure and dynamics of the business
processes around the system. In specific, it concerns
the identification of actors (anyone or anything that
is external to the business but interacts with it), and
use cases (a group of related workflows within the
business that provide value to the actors). UML
business modelling results in the use case and the
activity diagrams. A use case diagram illustrates use
cases and actors for business processes, as well as

the interactions between them. Actors are
represented as stick figures and use cases are shown
as ovals. An activity diagram is used to describe the
workflow through a particular use case. It consists of
action states, activity states and transitions between
them [14]. Figure 4 shows a UML high-level use
case diagram of VAM. The VAM actors are:
• Provider actor: who is interested in selling

agricultural products using the VAM system, and
supplies the VAM system with information
related to provider information, and production
forecast information.

• Customer actor: who is interested in buying
agricultural products using the VAM system, and
provides it with information related to customer
contact information (e.g. name, address,
telephone, e-mail), customer demand
information.

• Transport firm actor: who is responsible for
delivering the goods after successful matching
and negotiation process, and provides the VAM
system with transport firm information.

Fig.4: A Use Case Diagram of VAM

 According to the VAM system’s functionality,
use cases are the following:
• Supply customer info: it is performed by the

customer actor, and provides contact information
and demand information to the VAM system.

• Supply provider info: it is performed by the
provider actor, and provides the VAM system,
firstly with contact information and actual field
information, and next with estimated or actual
production information.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 165

• Store info: it is performed by the system through
collection and storing both customers’ and
providers’ given information, in the VAM
Database (DB).

• Get marketing info: when this use case is
executed, VAM informs the providers about
regional, national and European market trends,
and customers’ preferences of products.

• Product order: It is performed by the customer
actor, who expresses the acceptance or rejection
of VAM product.

• Information brokering and matching: when this
use case is executed, VAM aggregates and
combines product information, matches the
providers’ production information and the
customers' demand information, and then makes
offers to the customers.

• Negotiate: when this use case is executed, a
negotiation takes place between the customer
actor and the transport firm actor about the terms
of the payment (e.g. method of payment) and the
physical delivery of the products.

• Transport order: after a successful matching and
negotiation process, the transport firm actor is
responsible to transport the order according to
the agreed terms.
 Figure 5 shows the activity diagram of the
supply customer info use case (that corresponds
to a business process). Initially, the customer
provides his personal data that is need to be
validated by the system. In case of successful
login, the customer provides data for the
demanded products. In the opposite case, the
login process starts from the beginning.

Fig. 5: Activity Diagram of the Supply Customer
Info Use Case

 Figure 6 shows the activity diagram of the
product order business process. In the product order
business process, the customer selects a provider
from the resulting catalogue after the provision of
the demand information, and then sends to the
system the order for checking. The system checks
the availability of the requested items. If the
requested quantity of items item is available then,
the system informs the customer who will proceed
with the final confirmation of the order. Otherwise
(shortage of quantity) the customer has two options,
to continue by selecting another provider form the
resulting catalogue or to drop the order.

Fig. 6: Activity Diagram of the Product Order Use

Case

 In the following, the COSMOS environment is
used for modelling the Supply Customer Info and
Product Order business processes. These processes
are expressed as BPEL processes. First, the manager
view of COSMOS is used for designing these
processes. For brevity reasons, the manger view of
the product order business process is presented (Fig.
7). Second, the COSMOS developer view is used in
order to express the business processes as BPEL
processes. In this phase, BPEL code is automatically
generated for each business process. Table 1 shows
a part of the generated BPEL code of the final
executable files of the supply customer info business
process. Similarly, Table 2 shows a part of the
BPEL code of the product order business process.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 166

Fig. 7: Design of the Product Order Business
Process in COSMOS

 According to the BPEL characteristics, the supply
customer info and the product order BPEL processes
can be expressed as Web services. The developed
services can be used by similar agricultural e-
markets. Such services can lead to interoperability
among different e-market systems, and enhanced
user’s capabilities for accessing different e-markets.

Table 1: Part of BPEL Code of the Supply Customer

Info Business Process
<receive name="initiate" partnerLink="customer"
portType="customer:Customer"
 operation="process"
 variable="ncname" createInstance="yes" />
<invoke name="customerInformation"
partnerLink="customer" portType="customer:Customer"
 operation="process"
 variable="ncname" createInstance="yes" />
<invoke name="myname" partnerLink="ncname"
portType="qname"
 operation="process"
 inputVariable="username"
 outputVariable="validation"/>
<switch name="username">
 <case
condition="bpws:getVariableData(username,’validate’=’yes’
)">
 <sequence name="yes">
<invoke name="acceptInformation" partnerLink="broker"
portType="broker:Broker"

Table 2: Part of BPEL Code of the Product Order
Business Process

<sequence name= ”order”>
<sequence name= ”receiveInput” partnerLink=”client”
 portType= ”order:Order” operation=”process”
 variable= ”orderContentIn”
createInstance=”yes” />
<sequence name= ”callSelectProvider”
partnerLink=”customer”
 portType= ” customer:Customer”
 operation=”process”
 inputVariable= ”orderContentIn”
 outputVariable= ”orderSelectProviderOut” />
<sequence name= ”callSendOrder” partnerLink=”customer”
 portType= ”customer:Customer”
 operation=”process”
 inputVariable= ”orderContentIn”
 outputVariable= ”orderSelectProductOut” />
<sequence name= ”checkAvailability” partnerLink=”broker”
 portType= ”broker:Broker”
 operation=” checkAvailability”
 inputVariable= ”orderSendOrderOut”
 outputVariable= ”orderCheckAvailability” />

4 Conclusions
Information systems researchers develop Web
services hoping that, in a near future, these services
will be widely offered in e-markets [4]. In this
direction, this paper presents the development of
two business processes (i.e. supply customer info,
product order) of an agricultural B2B e-market
(termed as VAM), as Web services. Similarly, Web
services have been developed for the rest of the
VAM business processes such as supply provider
info, get marketing info, information brokering and
matching and negotiation. This is achieved using a
COSMOS environment which has been proposed by
one the of paper’s authors. With the use of Web
services in systems such as VAM a business process
is externalize in a standard way, making it available
to other e-markets. In the future work, Semantic
Web service technologies such as the Ontology Web
Language for Services (OWL-S, formerly DAML-S)
will be used to develop such business processes in
order to describe them in a semantic way.

References:
[1] Grieger, M., Electronic marketplaces: A

literature review and a call for supply chain
management research, European Journal of
Operational Research, Vol.144, 2003, pp. 280–
294.

[2] Huang, Y., Chung, J.-Y., A Web services-based
framework for business integration solutions,

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 167

Electronic Commerce Research and Applications
Vol.2, 2003, pp. 15-26.

[3] Nagappan, R., Skoczylas, R., Sriganesh, R.P.,
Developing Java Web Services: Architecting and
Developing Secure Web Services Using Java,
Wiley Publishing, 2002.

[4] Bui, T., Gachet, A., Sebastian, H.J., Web
Services for Negotiation and Bargaining in
Electronic Markets: Design Requirements,
Proof-of-Concepts, and Potential Applications to
e-Procurement, Group Decision and Negotiation,
Vol.15, 2006, pp. 469-490.

[5] W3C, Web Services Architecture Working
Group - Web Services Architecture,
http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/

[6] Martin, D., Paolucci, M., McIlraith, S., Burstein,
M., McDermott, D., McGuinness, D., Parsia, B.,
Payne, T., Sabou, M., Solanki, M., Srinivasan,
N., Sycara, K., Bringing Semantics to Web
Services: The OWL-S Approach, Semantic Web
Services and Web Process Composition,
Vol.3387, 2005, pp. 26-42.

[7] Georgiou, L., Business Process Design based on
Web Services, Diploma Thesis, School of
Informatics, University of Wales, Bangor, 2004.

[8] Putte, G., Jana, J., Keen, M., Kondepudi, S.,
Mascarenhas, R., Ogirala, S., Rudrof, D.,
Sullivan, K., Swithinbank, P., Using Web
Services for Business Integration, IBM, 2004.

[9] Peltzer, D., XML Language Mechanics and
Applications, Addison Wesley, USA, 2003.

[10] BEA, IBM, Microsoft, SAP AG, Siebel
Systems, Business Process Execution Language
for Web Services, http://www-
128.ibm.com/developerworks/library/specificatio
n/ws-bpel/.

[11] Leymann, F.Roller, D., Thatte, S., Goals of the
Business Process Language Specification.
http://xml.coverpages.org/BPEL4WS-
DesignGoals.pdf.

[12] W3C, XML Path Language,
http://www.w3.org/TR/xpath

[13] Costopoulou, C., Lambrou, M., Karetsos, S., A
Multi-Agent System for Internet Middlemen in
B2B Environment: A Case Study in
Agribusiness, Journal of Applied Systems Studies
(to appear).

[14] Saleh, K., Documenting electronic commerce
systems and software using the Unified
Modelling Language, Information and Software
Technology, 2002, vol. 44, pp. 303-311.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 168

