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Abstract: - In this paper novel compression techniques are developed for portable heart-monitoring equipment 
that could also form the basis for more intelligent diagnostic systems thanks to the way the compression 
algorithms depend on signal classification. There are two main categories of compression which are employed 
for electrocardiogram signals: lossless and lossy. Design of an optimal Wiener filter is implemented to remove 
noise from a signal, considering that the signal is statistically stationary and the noise is a stationary random 
process that is statistically independent of the signal. Two programs for compression and Wiener optimal 
filtering are realised in MATLAB.  
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1 Introduction 
The electrocardiogram (ECG) is one of the most 
important and widely used quantitative diagnostic 
tools in medicine. It is extremely useful for the 
diagnosis and management of heart abnormalities 
such as heart attacks and offers helpful clues to the 
presence of generalized disorders that affect the rest 
of the body, such as electrolyte disturbances and 
drug intoxication. ECGs can show long-term effects: 
previous cardiac events such as heart attacks that 
can result in permanent modification to the 
morphology of the ECG. Commercial ambulatory 
recorders typically have sample rates up to 360 
samples per second with a resolution of 10 or 12 bit 
giving a bit rate of around 4000bit/s. A typical 
commercial sample rate of 256 samples per second 
with 10bit resolution on two channels over seven 
days implies a memory requirement of close to 
400MB of data [3].  
   On top of the storage issue, there is increasing 
interest in remote monitoring, using real-time or off-
line transmission of complete records. As a result, 
compression is a key concern for makers of ECG 
equipment.  
   There are two main categories of compression 
which are employed for ECG signals: lossless and 
lossy. Lossless compression refers to any scheme 
whereby the signal reconstructed after compression 
is identical in every respect to the original signal. By 
contrast, lossy schemes allow differences between 
the original and the reconstructed signal. 

 
   The ECG is a real-world signal and is generally 
acquired from a relatively noisy electrical 
environment. Any lossless compression scheme has 
to reconstruct this random signal perfectly. This 
severely limits the effective compression ratio of 
lossless schemes when applied to ECG data. 
Lossless compression schemes may offer 
compression ratios of two or less. However, if 
restrictions on perfect reconstruction of the noise are 
relaxed, there is considerable scope for enhancing 
performance by utilising knowledge concerning the 
morphology of the ECG and its cyclo-stationary 
characteristics. 
   Having established that lossy compression 
schemes offer the greatest scope for achieving useful 
compression ratios, two further categories may be 
identified within that class: direct and indirect 
transformation processes. Direct compression 
schemes are generally less computationally intensive 
and operate on the time-domain ECG signal, using 
relatively simple approaches such as piece-wise 
linear approximation. The highest compression ratio 
with the best reconstruction quality can only be 
achieved using indirect compression methods, also 
called transform methods. 
   The recognising beats techniques generally exploit 
the cyclo-stationary nature of the ECG record. The 
nature of the beats within the ECG must be 
understood. More specifically deviations from the 
typical beat must be explicitly or implicitly 
recognised in order to represent them efficiently. A 
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typical recording consists of a series of ECG beats 
separated by periods of inactivity as illustrated in 
Fig.1. 

   
Fig.1. A typical ECG recording of a normal subject, 
clearly showing the cyclo-stationary nature of the 

ECG beat. 

 
Fig.2. Idealised ECG beat, showing the P-wave, 

QRS-complex and T-wave. 

 
Fig.3. Generic ECG indirect compression scheme. 

 
Note that even when the heart rate varies, the basic 
morphology and temporal extent of the beat are 
relatively unchanged; the main difference appears 
with the gap between beats. Important sections of 
the beat are labeled as the P-wave, QRS complex, 
and the T-wave, as shown in the idealized waveform 
of Fig.2. In practice there will often be two or more 
groups of beats, with each group having its own 
distinct morphology. These differences may be 
clinically diagnostic. Similarities within a group are 
exploited using indirect compression schemes. 
   Fig.3 shows the generic strategy used in many 
indirect compression methods, though a variant 
exists where the local DC removal step is omitted or 
carried out before triggering [4]. First, the ECG 
record is processed to locate the centre of each beat, 
thus allowing individual beat vectors to be extracted. 
These are then passed to the compression unit itself, 
which may be based on wavelet transforms and 
artificial neural networks, principal component 

analysis - PCA or non-linear principal component 
analysis- NLPCA. 
   ECG data compression algorithms are important 
for storage, transmission and analysis. An essential 
requirement of the compression algorithms is that 
the significant morphological features of the signal 
should not be lost upon reconstruction. 
   PCA is one of the most established techniques in 
multivariate statistical analysis and has been applied 
to ECG compression. If each beat consisted of N 
samples and each time-sample were allocated an 
axis in N-dimensional space, each beat could be 
plotted as a single point in N-dimensional space, 
with each sample voltage amplitude simply 
indicating the distance to plot along the 
corresponding axis. A collection of M beats may 
thus be plotted as a set of M points in this 
multidimensional space. It should be noted that all 
axes are equally important in this representation, as 
they are all involved in reconstruction of a beat. 
Also, the variables are not independent since there 
will be some correlation between adjacent samples 
and also with corresponding samples in other beats. 
This is a key feature that is exploited in PCA 
compression. 
 
 
2 Neural Networks for Data 
Compression 
   Compression is achieved by restricting the number 
of hidden-layer neurons in the neural network 
compared with the number of input nodes and 
output neurons. This effectively forces the neural 
network during training to learn how to represent 
each ECG difference waveform [2] with fewer 
coefficients than the number of raw samples in the 
difference ECG. As autoassociative neural networks 
are selflearning, we do not specify how they 
represent the compressed data, although detailed 
examination of the weights indicates they learn by 
extracting something akin to the eigenvectors of  a 
principal components decomposition, another key 
technique for ECG compression. An alternative to 
neural-network compression is through the use of 
the wavelet transform and its derivatives [4]. In 
contrast to the infinite-duration sinusoids 
encountered in Fourier analysis, a wavelet’s 
oscillations dampen down to zero after a few cycles, 
and the function is localised in time, lasting only for 
a few cycles. 
   Using PCA compression, recognisable 
reconstruction of a given beat may be achieved by 
summing the contributions of just the first few basis 
vectors as these contain most of the energy. The 
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eigenvectors themselves form part of the overhead 
but need to be stored only once for the whole set, 
which may have thousands of beats. The quality of 
the compression and reconstruction depends on how 
many of the PCA coefficients are used. Good 
reconstruction may be achieved using 10 or fewer 
coefficients [3].    
   As we can see in [3], Table 1 compares the 
performances of  various compression techniques. 
PCA gives optimal compression performance and 
exceeds wavelet transform performance, though it 
requires marginally more processing overheads. The 
performance is slightly poorer than neural-network 
compression but the processing overhead is 
significantly lower. Non-linear PCA has 
significantly lower processing overheads than neural 
networks but provides comparable compression 
performance and fidelity. The fidelity is also 
selectable through the number of stored coefficients. 
Additional benefits indicate this approach to be 
suitable as the basis for a complete ECG analysis 
and classification system. 
 

Table 1 Comparison of different ECG 
compression techniques. 

 
 
   After a study concerning Table 1 it can be seen 
that the autoassociative neural network compression 
technique has a very good to excellent 
reconstruction quality. 
    We make a short presentation concerning the 
auto-associative neural networks because this 
compression technique is also implemented in 
MATLAB. 
    A network compression ratio τ on an originally D-
dimensional vector means that the middle hidden 
layer must have D/τ neurons [2], [5], [6]. For a 
linear network it represents D-dimensional inputs 
with a D/τ dimensional hidden layer. For a non-
linear network, there is the added freedom to choose 
the dimensionality of the second and the fourth 
layers. We have choosen to keep the compression 
ratio between two layers constant. Therefore, second 
layers will have a dimensionality of D/τ0,5, 
representing a τ0,5 times compression from the input 
layer. The same compression ratio is also applied 
from the second layer to the third layer (the 
bottleneck). Therefore, once again, the bottleneck 

layers take a dimensionality of D/τ. This architecture 
for the non-linear networks is illustrated in Fig.4.   

 
 
Fig.4. A five-layer non-linear autoassociative 
network with bottleneck layer. The areas in red and 
green indicate respectively the compressing layers 
and the decompressing layers. The activation func- 
tions for the blue neurons are linear and those for 
the neurons in orange are sigmoidal. 

 
The neural-network scheme to be used in this paper 
is the multilayer perceptron (MLP) model as in 
Fig.5. 

Fig.5. A five-layer architecture with 
reduced dimensionality at the hidden layers.

 
Multilayer neural networks have the ability to map 
inputs in a non-linear manner. There we use an MLP 
neural network for finding the non-linear relations 
between inputs. To achieve data compression, the 
hidden layers must have a lower dimensionality than 
the input and output layers. With a bottleneck at the 
hidden layers, the MLP is forced to find suitable 
relations between each input with a lower 
dimensionality. The data appears at the hidden layer 
with the lowest dimensionality, therefore, is a 
compact representation of the input data. The 
remaining parts of the MLP would reconstruct and 
expand non-linearly the compressed signal to the 
original dimensionality.  
   The entire compression process is in Fig.6 
described. 

Proceedings of the 7th WSEAS International Conference on Signal, Speech and Image Processing, Beijing, China, September 15-17, 2007      28



Fig.6. The  complete compression system. 
 
The locations of the R peaks are first determined and 
boundaries between beats are determined. The time-
varying beats are then pre-processed to become 
fixed-dimensional input vectors. The input vectors 
are applied  to a neural network with a bottleneck 
middle layer. Finally, the output vectors are post-
processed to produce a reconstruction of the original 
time-series format. 
   Mathematically, we can describe the original ECG 
heartbeat as xn, for the n-th beat. The length of the 
vector is equal to the number of data points the 
heartbeat occupies in the original time-series format 
and the elements take the values of the normalised 
amplitude. Throughout the complete compression 
and reconstruction process, information is lost in 
two major ways: the linear interpolation of the pre-
processing and post-processing stages and the 
reduction of dimensionality at the neural network 
bottleneck. It is useful to have two definitions of 
error so that we can quantify the different 
contributions from the above two sources. We 
therefore propose to evaluate both the overall error, 
which is a measure including both error sources and 
the network error, which provides information on 
the second error source only. The network error is 
also used to evaluate the progress of learning when 
the network is being trained. The network error and 
the variance ratio reach minimum at roughly the 
same time. It can be shown that the global minimum 
of the sum-of-square error occurs at the point when 
the network regresses to the average vector of the 
training set, hence reconstructing the same average 
vector for all input patterns [2]. Therefore, the 
network has learnt the average of the training set for 
the global minimum of the sum-of-square error; this 
effect can be shown visually by snapshooting the 
reconstruction during the training process in Fig.7. 

Fig.7.The network compression ratio is 1.5:1.(a) the
original ECG, (b) a snapshot after 20 iterations of  
the learning algorithm – the reconstructed pattern is
the average of the training set, (c) after 300 itera- 
tions, (d) after 5000 iterations.     

 
Two implications can be drawn: the criterion for 
terminating the training process shall not be based 
solely on network error. It should be possible to 
improve the training algorithm by modifying the 
error criterion and including the variance ratio as 
part of the cost function. 
 
 
3 The Wiener Filter 
   The filters described in literature [1],  [5] can take 
into account only limited information about the 
temporal or spectral characteristics of the signal and 
noise processes. They are often labeled as ad hoc 
filters: one may have to try several filter parameters 
and settle upon the filter that appears to provide a 
usable result. The output is not guaranteed to be the 
best achievable result, because it is not optimized in 
any sense. For designing an optimal filter there is 
necessary to remove noise from the signal, given 
that the signal and noise processes are independent, 
stationary and random processes. We have to 
assume that the desired or ideal characteristics of the 
uncorrupted signal are known. The noise 
characteristics may also be assumed to be known. 
Wiener filter theory provides for optimal filtering by 
taking into account the statistical characteristics of 
the signal and noise processes. The filter parameters 
are optimized with reference to a performance 
criterion. The output is guaranteed to be the best 
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achievable result under the condition imposed and 
the information provided. The Wiener filter is a 
powerful conceptual tool that changed traditional 
approaches to signal processing [1]. 
   Considering the application of filtering a 
biomedical signal to remove noise, let us limit 
ourselves to a single-input, single-output, FIR filter 
with real input signal values and real coefficients. 
Fig.8. shows the general signal-flow diagram of a 
transversal filter with coefficients or tap weights wi, 
i=0,1,2,…,M-1, input x(n) and output  ( )nd~ [1]. The 
output is usually considered to be an estimate of 
some desired signal d(n) that represents the ideal, 
uncorrupted signal, and is, therefore, indicated as 
( )nd~ . If we assume for the moment that the desired 

signal is available, we could compute the estimation 
error between the output and the desired signal as 

( ) ( ) ( ).~ ndndne −=     (1)

Since ( )nd~  is the output of a linear FIR filter, it can 
be expressed as the convolution of the input x(n) 
with the tap-weight sequence wi as: 
 

Fig.8. Block diagram of the Wiener filter. 
 

( ) ( ).~ 1

0
knxwnd

M

k
k −= ∑

−

=
 

      (2)

For easier handling of the optimization procedures, 
the tap-weight sequence may be written as an Mx1 
tap-weight vector: 

w=[w0, w1,w2,…,wM-1]T,       (3)
where the bold-faced character w represents a vector 
and the superscript T indicates vector transposition. 
As the tap weights are combined with M values of 
the input in the convolution expression, we could 
also write the M input values as an Mx1 vector: 

( ) ( ) ( ) ( )[ ]TMnxnxnxnx 1,...,1, +−−=       (4)

The vector x(n) varies with time, at a given instant n 
the vector contains the current input sample x(n) and 
the preceding (M-1) input samples from x(n-1) to 
x(n-M+1). The convolution expression in equation 

(2) may now be written in a simpler form as the 
inner or dot product of the vectors w and x(n): 

( ) =nd~ wTx(n)=xT(n)w=<x,w>.            (5)
 The estimation error is then given by 

( ) ( ) −= ndne wTx(n).            (6)
   Wiener filter theory estimates the tap-weight 
sequence that minimizes the MS (mean square) 
value of the estimation error; the output could then 
be called the minimum mean-squared error (MMSE) 
estimate of the desired response, the filter being then 
an optimal filter. The mean-squared error (MSE) is 
defined as 

J(w) = E[e2(n)]=E[{d(n)-wTx(n)} 
{d(n)-xT(n)w}]= E[d2(n)]-wTE[x(n)d(n)]-

-E[d(n)xT(n)]w + wTE[x(n)xT(n)]. 

 (7)

Note that the expectation operator is not applicable 
to w as it is not a random value. Under the 
assumption that the input vector x(n) and the desired 
response d(n) are jointly stationary, the expectation 
expressions in the equation above have the 
following interpretations [1]: E[d2(n)] is the variance 
of d(n), written as σ2

d with the further assumption 
that the mean of d(n) is zero; E[x(n)d(n)] is the 
cross-correlation between the input vector x(n) and 
the desired response d(n), which is an Mx1 vector: 

( ) ( )[ ].ndnxE=Θ    (8) 

Note that ( ) ( ) ( )[ ] ,1,...,1,0 TM−−=Θ θθθ where 
( ) ( ) ( )[ ] .1,...,2,1,0, −=−=− MkndknxEkθ     (9)

E[d(n)xT(n)] is simply the transpose of E[x(n)d(n)]; 
therefore 

( ) ( )[ ].nxndE TT =Θ      (10)

E[x(n)xT(n)] represents the autocorrelation of the 
input vector x(n) computed as the outer product of 
the vector with itself, written as 

( ) ( )[ ].nxnxE TT =Θ      (11)
Setting this expression to zero, we obtain the 
condition for the optimal filter as 

Θ=Φ 0w .     (12)
This equation is known as the Wiener-Hopf 
equation. It is also known as the normal equation as 
it can be shown that [1], for the optimal filter, each 
element of the input vector x(n) and the estimation 
error e(n) are mutually orthogonal and furthermore, 
that the filter output ( )nd~ and the error are mutually 
orthogonal. The optimal filter is obtained as 

ΘΦ= −1
0w .     (13)

Applying the Fourier transform to the equation 
above, we get 

( ) ( ) ( ),ωωω xdxx SSW =      (14)
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Which may be modified to obtain the Wiener filter 
frequency response ( )ωW as 

( ) ( )
( )ω
ωω

xx

xd

S
SW =  

    (15)

where Sxx(ω) is the power spectral density (PSD) of 
the input signal and Sxd(ω) is the cross-spectral 
density (CSD) between the input signal and the 
desired signal. The frequency response of the 
Wiener filter may be obtained by modifying 
equation (15) by taking into account the spectral 
relationships ( ) ( ) ( )ωωω ηSSS dxx +=  and ( ) ( )ωω dxd SS =  
which leads to 

( ) ( )
( ) ( ) ( )

( )

.
1

1

ω
ωωω

ωω
ηη

d

d

d

S
SSS

SW
+

=
+

=  
    (16)

where ( )ωdS  and ( )ω
η

S  are the PSDs of the 

desired signal and the noise process, respectively. 
Designing the optimal filter requires konwledge of 
the PSDs of the desired signal and the noise process. 
   We have designed a Wiener filter to remove the 
artifacts in the ECG signal. The equation of the 
desired filter is given in equation (15). The required 
PSD model may be obtained as follows. We created 
a piece-wise linear model of the desired version of 
the signal by concatenating linear segments to 
provide P, QRS and T waves with amplitudes, 
durations and intervals similar to those in the given 
noisy ECG signal. We computed the PSD of the 
model signal. We selected a few segments from the 
given ECG signal that are expected to be iso-
electric; we computed in MATLAB their PSDs and 
obtained their average. The selected noise segments 
should have zero mean or have the mean subtracted 
out. Finally, we compared the results of the Wiener 
filter with those obtained by synchronized averaging 
and lowpass filtering. We have obtained following 
characteristics Fig.9, Fig.10, Fig.11, Fig.12. 

Fig.9. Initial noisy ECG signal. 

Fig.10. Desired signal approximation at the filter 
output. 

 
Fig.11. Desired spectrum – blue, noise spectrum- 

red, filtered signal – black. 

 
Fig.12. Cardiac cycle after Wiener filtering. 

 
4    Conclusion 
   The most important point to observe here is that 
the filter was derived with models of the noise and 
signal processes (PSDs), which were obtained from 
the given signal itself in the present application. No 
cutoff frequency was required to be specified in 
designing the Wiener filter, whereas the Butterworth 
filter requires the specification of a cutoff frequency 
and filter order. Most signal acquisition systems 
should permit the measurement of at least the 
variance or power level of the noise present. A 
uniform PSD model can easily be derived. Models 
of the ideal signal and the noise processes may also 
be created using parametric Gaussian or Palladian 
models either in the time domain or directly in the 
frequency domain. 
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