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Abstract: - In dealing with the production of various products in some industries, many firms need to respond to 

wide ranges of quantities demanded. High responsiveness to wider ranges of quantities can be a competitive 

advantage for a firm in modern highly competing environments. To stay ahead of competitors, a firm should be 

able to schedule production in an efficient way. The purpose of this study is to investigate the effects of wide 

ranges of quantities demanded on the scheduling. The production scheduling problem of knitted fabrics is used 

to examine the influences. Genetic algorithm (GA) is employed to be the analytical tool. Optimal parameters 

including mutation rates and crossover rates that generate good performance are obtained experimentally. 

Results from this paper show that the makespan in wide ranges of quantities is lower than that in a small range. 

However, the machine utilization in wide ranges of quantities is lower than that in a small range. To schedule the 

production with a lower makespan and with reasonable machine utilization, one can divide a big customer order 

into many manufacturing orders with smaller quantities. In addition, the on-time delivery rate can be increased 

by adding a penalty factor of completion time of a job. 

 

Key-Words: - Genetic algorithm, knitted fabric, production scheduling, responsiveness, wide ranges of 
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1   Introduction 

High responsiveness can be a competitive advantage 

for a firm. To achieve high responsiveness, it is very 

important for a firm to be able to response to a wider 

range of quantities demanded, which generally 

causes higher uncertainty in production and hence 

leads to a higher total cost. To schedule production 

efficiently, it is thus of great importance to 

understand the influences of wide ranges of 

quantities demanded on the performance of 

scheduling. 

     The production of various products in some 

industries involves dealing with wide ranges of 

quantities demanded. Take the production of knitted 

fabrics for example. An order for a prototype 

production of a new product is likely to be small; an 

order for an international big company is likely to be 

huge. The quantities can range from about 15 kg to 

150,000 kg, causing the arrangement of production 

difficult. To schedule the production, schedulers 

generally divide a big customer order into some 

manufacturing orders. A question arising right away 

is that how many manufacturing orders should be 

split into? A higher number of manufacturing orders 

may lead to a positively higher machine utilization 

but a negatively higher makerspan (total production 

time), which implies a higher manufacturing cost. In 

addition, to best meet the requirements of customers’ 

needs, a higher on-time delivery rate is preferred. The 

on-time delivery rate which means the percentage of 

on-time delivery orders is a very important 

performance metric for many industries today. It is 

very difficult to arrange each order requested by a 

customer into suitable machines within a short period 

in a manner of fulfilling all the company’s objectives. 

Note that these objectives conflict each other 

frequently. Thus, a system that can meet the different 

requirements of company objectives is greatly 

needed. 

In this paper, we investigate the influences of 

wide ranges of quantities on the scheduling. Optimal 

results are experimentally found and some 

suggestions are presented to better design a 

scheduling system for knitted fabrics. In this study, 

we use genetic algorithm (GA) [1-2] as the analytical 

tool of the production scheduling. Many pervious 

studies confirmed that GA is useful in scheduling 

production [3-11], especially of elastic knitted fabrics 

[12-13].  

The remainder of the paper is organized as 

follows. The production of knitted fabrics is briefly 

introduced in section 2. The analysis is presented in 

section 3.  In section 4, the results and discussion are 

presented. Finally, conclusions are drawn in section 

5. 
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2 Production of Knitted Fabrics 

Elastic yarn was considered to be one of the most 

important inventions in textile industry in last 

century. As a result of the elastic yarn’s 

characteristics, which contain such as comfort, 

wrinkle resistance, flexibility, and good form-fitting, 

and so on, products made of elastic yarn become 

more and more popular. Consequently, the 

manufacture of elastic fabrics has turned out to be a 

focused issue since they were developed. In the 

production process of elastic knitted fabrics, one of 

the most important operations is the production 

scheduling. Only when an efficient scheduling of 

production is arranged can a manufacturer keep up its 

competitive advantages in modern competing 

environments. Hence, a good scheduling system is 

urgently needed for many manufacturers of elastic 

knitted fabrics. However, it is not easy for a 

manufacturer of elastic knitted fabrics to find a 

suitable scheduling system which can arrange 

production efficiently for versatile environments in 

practices. Some studies [12-13] have discussed the 

production scheduling of knitted fabrics. However, 

they did not investigate the influences of the wide 

ranges of quantities demanded on the scheduling. 

In dealing with the scheduling of knitted fabrics, 

one of the most concerned issues is about the colors 

of yarn. Generally, the colors of yarn are divided into 

several groups: the lightest, light, generic, dark, and 

the darkest. As illustrated in Fig. 1, if the yarn’s color 

of the former job is darker than the following one for 

two neighboring jobs in a certain machine, there will 

be a need to clean the knits and thus an extra setup 

time is required. Therefore, it is crucial to schedule 

the production in a way to be able to reduce the setup 

time. This involves high complexity and can not be 

done easily by manual. Thus, a good scheduling 

system for production of knitted fabrics is greatly 

needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another important issue for the production 

scheduling of knitted fabrics is to meet customer’s 

needs and the objectives of the firm. Higher machine 

utilization, shorter total production times, and higher 

on-time delivery rates are usually favored for 

companies. However, the objectives generally 

conflict each other. Thus, there is a need to 

compromise between these objectives. In this paper, 

we will discuss on these conflicting objectives. 

 

 

3   Analysis 

In this section, the problem is depicted first and then 

the input data and modeling are presented and 

explained. Finally, the method of solution is 

described. 

 

3.1 Problem Description 

The problem can be depicted as a single production 

station with a number of parallel machines. The 

knitting machines can be categorized into several 

types. Each type has a fixed capacity and a fixed 

setup time. The flowchart for manufacturing elastic 

knitted fabrics is shown in Fig. 2. Totally, there are 

NMO orders and Nma knitting machines. 

      

 
 

The machine setup time will occur when the 

yarn’s color of the former job is darker than the 

following one for two adjacent jobs in the same 

machine. The problem considered here is to decrease 

the overall machine setup time to obtain the minimal 

makespan. 

Assigned 

MO 1 

MO 2 

MO 3 

MO j 

MO 4 

 MO NM0 

Next 

working   

station 

Machine 1 

Machine 2 

Machine i 

Machine Nma 

Fig. 2. A schematic diagram of order assignment 

with NMO orders and Nma machines. MO means 

manufacturing order 

Lighter Darker 

Lighter Darker 

Machine 

Setup time≠ 0 

Machine 

Setup time＝0 

Fig. 1. Machine setup time: if the yarn color in the 

former job is darker than in the latter, an 

additional setup time is required 
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To solve the problem mentioned above, the 

following assumptions are made. 

(1) The capacity of a specific type of machine is 

fixed. The same type machine has a same capacity, of 

which unit is kg per day or per hour. 

(2) The setup time (the time to clean the knits of 

knitting machines) of a specific type of machine is 

constant. Different machines have different setup 

times. 

(3) The colors of yarn can be roughly divided into 

five categories: the darkest, dark, middle, light, and 

the lightest. 

(4) A customer order can be divided into some 

manufacturing orders. Each manufacturing order is 

assigned to a machine only and produces a single 

product.  

(5) The shortage of raw material is neglected. 

(6) The malfunction of the machines is negligible. 

(7) The production environment is “make to order 

(MTO)” and thus there are no stocks. 

 

3.2 Input Data 

The data of customer orders are collected from an 

ERP (Enterprise Resource Planning) system. A 

typical order for knitted fabrics in a famous company 

in Taiwan is shown in Table 1. The main input data 

include order number, yarn color, order quantity, 

specifications, due date, and more. To facilitate the 

problem solving, the fabric color is briefly divided 

into 5 categories and each is represented by a color 

number.  

     

 

 

 

 

 

 

 

 

 

 

 

 

Besides the order data, the data relating to 

machine are also required. These main data include 

the capacity of machine, the machine setup time, and 

the number of machines.  

 

3.3 Fitness Function 

After completing the encoding of chromosomes, we 

need a fitness function to measure the performance. 

The fitness function measures the fitness of the 

production makespan. The schedule which has the 

minimal makespan stands for a best schedule. The 

lower the makespan, the better is the assignment of 

orders to machines. 

In this paper, we consider the penalty which is 

the product of the penalty coefficient µij and Pi, where 

Pi is the machine setup time due to the improper 

scheduling of job j in machine i. There are different 

setup times for different knitted machines.  

The fitness function for the production 

scheduling of elastic knitted fabrics can be described 

mathematically as 

 

 

 

 

 

 

3.4 Solution Procedure 

The procedure for GA is depicted in Fig. 3. 

 

Output  

and  

Decode 

Encode and set parameters  

Initialize the population 

Evaluate the fitness function 

N 

Select 

Crossover 

Mutate 

Go to the new generation 

Y 
Terminal condition 

Fig. 3. The procedure for GA 

 
In encoding, each chromosome is consisted of a 

sequence of genes gi, where j = 1, 2,…, NMO and NMO 

is the number of manufacturing orders (or jobs). 

Each gene includes two bits of information: gene’s 

position means the job number and gene’s number 

means the machine number.  

 

Table 1. A typical order for knitted fabrics 
 

Or der  Number  
Color 

Number 
Width Weight Quantity 

Description and 

Specifications 
Machine Type 

Order 

Due Date 

S03660051-1 3 54 295 1600 C/M15/2+OP2x1 30”28G 96F 2007/07/15 

E03530104-1 3 54 295 1400 C/M15/2+OP2x1 30”28G 96F 2007/07/20 

C13370072-1 3 54 295 2580 C/M15/2+OP2x1 30”28G 96F 2007/07/08 

C13370072-2 5 60 310 1420 CVC32S/1+N45/12 36”23G 102F 2007/07/08 

C13370074-1 1 56 370 1370 R34S/1+20P3*2 30”28G 96F 2007/07/13 

E03530105-1 1 56 370 500 R34S/1+20P3*2 30”24G 108F 2007/07/10 

E03530106-1 2 50 193 1200 CVC32S/1+ N45/12 30”24G 108F 2007/07/20 

S03660052-1 5 54 300 1500 CVC32S/1+N45/12 36”23G 102F 2007/07/18 

S03660052-2 1 56 370 1500 R34S/1+20P3*2 30”28G 96F 2007/07/18 

C13370072-1 3 54 295 2580 C/M15/2+OP2x1 30”28G 96F 2007/07/08 

 

Minimize F = }{
1 1

iij

N

i

N

j

ij PT
ma MO

×+∑∑
= =

µ          (1)           

1) 
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4   Results and Discussion 

In this paper, we used GA to solve the production 

scheduling problem. We adopted Microsoft Visual 

C++ to develop the program. The operating system 

was Window 2000. We used the binary encoding 

method. The crossover and the mutation methods 

which were used to find a solution in this paper were 

two-point crossover and one-point mutation, 

respectively. 

To investigate the influences of wide ranges of 

quantities on the performance, we let the quantity 

varies from 15 to 150,000 kg. For comparison, a 

small range of quantities is set and in which the 

quantities vary from 1,000 to 2,000 kg with an 

average of 1,500 kg. All the cases have a same total 

quantity of 300,000 kg. For the brevity of description, 

we designate the case with wide ranges of quantities 

as WRQ, the case of a small range of quantities as 

SRQ, the generation number as G, the crossover rate 

as Pc, the mutation rate as Pm, the average makespan 

as AVG, the standard deviation of makespan as STD, 

the number of machine as Nma, and the number of 

manufacturing order NMO. 

 

4.1 Optimal Parameters 

To find optimal parameters, first the population size 

and the generation number were tested. Suitable 

population size and generation number are chosen 

based on the average makespan and computer 

execution time. The population size was set to be 50, 

100, 200, 300 and 500. Through testing, the 

population size for WRQ was chosen as 300 since it 

gave a lower makespan and a reasonable execution 

time. Similarly, G was varied with 50, 100, 200, 300, 

and 500 and the results showed that 200 is a suitable 

parameter value. Thus, the following experiments 

were run with a population size of 300 and G = 200 

for the WRQ case. As for SRQ case, the experiments 

also showed that a population size of 300 and G = 

200 are suitable settings.  

 

1,250
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AVG
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population=100

population=200
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Fig. 4. Variation of population size on the average 

makespan AVG 

The results for the optimal Pm and Pc are 

illustrated with a Bubble Chart in Fig. 5. The circle 

center represents the location of AVG, while the 

radius of the circle stands for STD. Thus, a small 

circle with a lower center location is preferred since it 

means the parameters yield better performance. As 

we can see from this figure that Pc = 0.9 and Pm = 

0.05 are the best parameters for the WRQ case. 
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Fig. 5. The influences of crossover rate Pc and 

mutation rate Pm on the average makespan AVG with 

wide ranges of quantities (WRQ) 

 

4.2 Effects of Wide Ranges of Quantities 

The effects of wide ranges of quantities can be seen 

by comparing the results of the WRQ and the SRQ 

cases. Comparing Fig. 5 with Fig. 6 we can find that 

AVG is lower in the WRQ case than in the SRQ case. 

The reason for the WRQ case having a lower average 

makespan is that the big customer order with a 

quantity of 150,000 kg is assigned to the machine 

with the best capacity. However, in practice, this is 

inappropriate because a big customer order is 

generally divided into some manufacturing orders 

and assigned to different machines to meet the due 

date and balance the machine utilization. A question 

arising now is that how many manufacturing orders 

should be divided into? Thus, the value of the number 

of manufacturing order, NMO, should cause some 

influences on the scheduling efficiency.  
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Fig. 6. The influences of crossover rate Pc and 

mutation rate Pm on the average makespan AVG with 

a small range of quantities (SRQ) 
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The effects of the number of divided 

manufacturing orders NMO on the average makespan 

are shown in Fig. 7. A lower NMO leads to a lower 

AVG, indicating a lower makespan. Figure 7 shows 

this trend. However, the machine utilization will be 

lowered as NMO decreases, as we can see from this 

figure too.  
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Fig. 7. The relation between the average makespan 

and the machine utilization 

 

4.3 Effects of Due Date 
 

The effects of due date on the scheduling are 

presented in Table 2. Two cases are studied: one is 

with due dates of 1 to 10 days and the other is with 

due dates ranging from 1 to 20 days. Both cases 

compare the results from υ ＝0 (without a penalty 

factor of completion time of job j) and υ ≠0 (with a 

penalty factor of completion time of job j).  

The on-time delivery rate is also decreased if 

NMO is increased, as depicted in Table 2. Thus, there 

should be a compromise for the scheduler to arrange 

the production schedule between the three different 

objectives.  As we can see from Table 2 that short due 

dates cause lower on-time delivery rate. To increase 

on-time delivery rate, an added penalty factor can be 

used. 

To obtain a higher on-time delivery rate, we can 

multiply the makespan of a late order by a penalty 

factor. Thus, the fitness function can be modified as e 

follows: 

 

                                                          

 

 

 

Where jυ  is the penalty factor of completion time 

caused by past due. 

 

 

Table 2. The effects of due date on the scheduling on 

the performance. * indicates no divided orders 

 

 

5   Conclusion 

In dealing with the production of some products in 

many industries, many firms need to respond to wide 

ranges of quantities demanded. High Responsiveness 

to wide ranges of quantities can be a competitive 

advantage for a firm in highly competing industries. 

To stay ahead of competitors, the firm should be able 

to schedule production in an efficient way.  

The purpose of this paper is to investigate the 

effects of wide ranges of quantities on the scheduling. 

We use the production of elastic knitted fabrics as an 

example to discuss the influences of wide ranges of 

quantities. Genetic algorithm (GA) is employed to be 

the analytical tool.  

Results from this paper show that the makespan 

in wide ranges of quantities is lower than that in a 

small range. However, the machine utilization in 

wide ranges of quantities is lower than that in a small 

range. To schedule the production with a lower 

makespan with reasonable machine utilization, one 

can divide a big customer order into many 

manufacturing orders with smaller quantities. As the 

number of divided manufacturing orders increase, the 

machine utilization is increased but the average 

makespan and the coefficient of variation are also 

increased. Results also show that the on-time 

 
Penalty 

factor 

Due 

date(days) 
NMO  AVG 

Coefficient 

of variation 

On-time 

delivery 

rate 

10    825.367     15.473     0.019     

15    910.533     17.431     0.019     1~10  

20    924.967     21.537     0.023     

10    834.367     21.513     0.026     

15    913.100     24.640     0.027     

υ ＝＝＝＝0 

1~20 

     

20    917.500     25.923     0.028     

10    829.133     21.631     0.026     

15    913.933     25.261     0.028     1~10 

20    912.400     28.536     0.031     

10    830.700     20.944     0.025     

15    913.900     23.200     0.025     

WRQ 

υ ≠0 

1~20 

     

20    913.033     32.932     0.036     

1~10 1344.233  0.013  0.9108  
υ ＝＝＝＝0 

1~20 
*     

1327.533  0.013  0.9848  

1~10 1355.700     22.778     0.017     
SRQ 

υ ≠0 

1~20 
*     

1349.533     18.818     0.014     

Minimize F = }{
1 1

iij

N

i

N

j

ijj PT
ma MO

×+×∑∑
= =

µυ             (2)           

(1) 
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delivery rates in short due dates are lower than those 

in longer due dates. To obtain higher on-time 

delivery rates for short due dates, an addition penalty 

factor of the completion time of a job can be added. 

Moreover, optimal parameters including mutation 

rates and crossover rates that generate good 

performance are obtained experimentally. And the 

results are presented in Bubble Charts, which is 

found to be a convenient and visualized tool to 

illustrate the results.   
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