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Abstract:  - Optical-flow field analysis is one of the most efficient tools for segmenting moving objects in an 
image sequence, especially when a camera itself is also moving. Object segmentation from the optical flow 
can be considered as a clustering problem. The performance of clustering method can significantly improve 
results of moving object segmentation. This work presents the unsupervised clustering system using a 
modified self-organizing feature map (MSOFM) neural network. The network can automatically perform 
clustering without having any priori knowledge of any initial number of clusters or any initial spatial position. 
It also can be adjustable to achieve multi-resolution clustering. This allows the proposed network to segment 
flows of multiple moving objects having nearly same speeds. The system shows desirable results of 
segmentation of moving objects in the camera-moving image sequence. Results and discussions of adjustable 
capability of the network are also presented. 
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1   Introduction 
 In video processing, optical-flow field analysis is 
one of the most efficient tools for moving objects 
segmentation, especially in the case when a camera 
itself is also moving. Object segmentation from the 
optical flow can be considered as a clustering 
problem. Besides the performance of the optical 
flow calculation, the performance of clustering 
method can significantly improve the segmentation. 
There has been many data clustering researches. The 
k-mean method in [9] determines distances between 
data points and centers of clusters. These distances 
are used to decide class of cluster by comparing 
with the minimal average distance and then 
readjusting the center of cluster. This method, 
however, requires initial number and positions of 
clusters. The fuzzy c-Mean [7] applies fuzzy 
mechanism for readjusting centers of clusters. In [8], 
the hierarchical clustering method is introduced. It is 
a sequential approach which provides clustering at 
many different numbers of clusters along the way. 
The method uses an agglomerative (clumping) or 
divisive (splitting) approach and requires distance 
function for calculating distance between clusters. 
There are also many works that focus on using 
artificial neural networks for data clustering such as 
adaptive resonance theory network in [1-2] 

  In optical flow field of study, data clustering 
has been deployed to cluster optical flow fields. In 
[5], the new EXIN segmentation neural network has 
been used to automatically clustering optical flows 
from a still camera. The probabilistic clustering has 
been utilized in [4]. The inputs of such system are 
optical flows and image brightness. The Gauss-
Newton optimization method is applied to search for 
the optimal parameters of clustering procedures. In 
[9], multi-resolution optical flows are computed by a 
complex discrete wavelet transform. The affine 
parametric motion model of these flows are 
determined and used for clustering by the 
competitive agglomeration algorithm which yields 
the optimum number of clusters and the center of 
each cluster. The results are segmented using 
classical mixture model and the expectation-
maximization algorithm. In [6], the region-based 
nonparametric video object segmentation method 
has been proposed. In order to be more accurately 
segmented the video objects, the pre-clustering is 
processed to remove small and isolated regions 
based on texture characteristic of those regions. The 
optical flows are then computed and clustered using 
fuzzy c-mean. The smoothed motion fields are 
clustered again and the undesirable flows are 
eliminated by judging from theirs area size. 
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Fig. 1 Optical flow clustering system using modified self-organizing feature map 

 
This paper presents the unsupervised 

clustering system using a modified self-organizing 
feature map (MSOFM) neural network. The network 
can automatically perform clustering without having 
any priori knowledge of any initial cluster numbers 
or initial spatial position. The most favorable feature 
of the proposed network is that it is adjustable to 
achieve multi-resolution clustering. This allows the 
network to segment flows of multiple moving 
objects having nearly same speeds. Details of the 
system are described in the following sections. 
 
 
2   Optical Flow Clustering System Us-
ing Modified Self-Organizing Feature 
Map 
 In order to achieve an automatic clustering system, 
the unsupervised self-organizing feature map 
(SOFM) network is applied for the optical flow 
clustering. Fig. 1 displays an overall system. The 
Lucas-Kanade optical flow is filtered to eliminate 
some miscalculated flow. The modified SOFM then 
performs the clustering process in stage I. After that, 
all clusters from stage I is then linked to group 
similar clusters together in stage II. Details of both 
stages are discussed next. 
 
 
3 Modified Self-Organizing Feature 
Map 
 The main engine of clustering optical flow in this 
work is the modified self-organizing feature map 
(MSOFM). A goal of using this modified network is 
to be able to obtain flow clustering without any 
supervised learning or any initial number of flow 
clusters. The network is composed of two main 
layers: comparison layer and weight layer. The 
comparison layer is responsible for comparing 
incoming flow feature vector with stored weights 
from the weight layer. If there is no weight that is 
efficiently similar to the input flow feature vector, 

the network then stores it as a new weight in the 
weight layer. Otherwise, the closest stored weight 
will get updated and the network continues with the 
remaining input flow feature vectors. This coarse 
clustering of flow feature vectors will be analyzed 
and grouped to achieve finer clustering in the later 
process called a weight linking. The structure of this 
modified network is displayed in Fig. 2. 
 

 
 

Fig. 2 Network structure of MSOFM. 
 
 The network input layer receives optical flow vector 
as the input to the network. This optical flow vector, 
called flow feature vector λ , consists of four 
elements which are a flow angle, a flow magnitude, 
and flow spatial position x  and y as given by 
 

[ ]Tnnnnn yxρθλ =  
 
where   

nθ  = optical flow angle 

nρ  = optical flow magnitude 
),( nn yx = optical flow spatial position 

n  = N,,3,2,1 …  
N  = total optical flows. 
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The MSOFM starts clustering process with no initial 
weight. The first neuron or weight then comes from 
the first input flow feature vector. The network 
stores this first weight as 1W  in the weight layer. 
The new input flow feature vector is then compared 
with all weights in the weight layer.  This process 
occurs in the comparison layer. The comparison of 
these flow feature vectors is performed based on a 
flow-clustering sensitivity FCs .  
 

[ ]TFCs γσβα=  
where 

α  = optical flow angle sensitivity 
β  = optical flow magnitude sensitivity 
σ  = optical flow horizontal sensitivity 
γ  = optical flow vertical sensitivity 

 
This flow-clustering sensitivity provides different 
levels of comparison for each element in the flow 
feature vector. The comparison can be carried out by 
determining the Euclidean distance between the 
flow feature vector and each of weight vectors. The 
following relationship is deployed to perform such 
comparison. 
 

( )nmFCm Ws λμ −⋅=  
 
where Mm ,,3,2,1 …=  and M is the number of 
weight vectors in the network memory. The value of 
each mμ  is used for making decision whether or not 
the flow feature vector n  is sufficiently similar to 
the weight vector mW . Applying flow-clustering 
sensitivity FCs  in the comparison process introduces 
the multi-resolution clustering scheme. 
  Let μ′  is the minimum value among all 

mμ  from comparing the flow nλ  with the weight 
vector W ′ . This μ′  is then compared with the 
vigilance value ζ  and leads the network to two 
actions. Firstly, if ζμ <′ , this indicates that the 
flow feature vector is not sufficiently similar to any 
weight vector in the network memory. The network 
then creates new weight corresponding to this flow 
feature vector and classifies it as a new cluster, i.e. 

nMW λ=+1 . Secondly, if ζμ ≥′ , this suggests that 
the flow feature vector is the most similar to the 
corresponding weight vector W ′ . By following the 
winner-take-all learning scheme, the weight vector 
W ′  is then the only weight to get updated by using 
the following equation.  

[ ]nWWW λη −′+′=′  
where η  is the learning constant. 

This first stage of optical flow clustering 
proceeds until the last flow Nλ . An example of flow 
clustering by the presented network is demonstrated 
in Fig. 3. In the second stage, all clusters will be 
determined for connectivity. Details are described in 
the next section. 
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Fig. 3 An example of flow clustering using MSOFM 
(a) a synthesis image of optical flow (b) a result of 
flow clustering in a flow feature domain (the number 
represents time order of neuron construction: 
number of flows in the neuron: number of neuron 
cluster (c) a result of flow clustering in a spatial 
domain. 
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4   Weight Linking 
 After all optical flows are assigned to clusters, i.e. 
weights, some of clusters can be considered to have 
some similarity. These clusters are said to be 
connected and should be classified to the same 
moving object that causes the same flows. This 
work presents a weight linking by using similarity 
matching approach. The similarity is measured by 
the Euclidean distance between each cluster. This 
distance is weighted by flow-clustering linking 
sensitivity ls  as given by 
 

[ ]Tllllls γσβα=  
 
where the parameter lα , lβ , lσ , and lγ  are again 
the flow angle, flow magnitude, flow horizontal and 
flow vertical sensitivity, respectively.  The matching 
of similarity can then be computed by  
 

( )jils WWsid −⋅=)(  

 
where ji ≠ . Consider all flow’s cluster index in 

{}iG =  where fMi ,,3,2,1 …=  and fM  is the 
total number of clusters in the network. The 
similarity threshold ε  can be chosen for linking 
each cluster as the following steps. At first, compute 

})(:{ εδ <= idi s . Next, calculate )min(δ=k  and 
then sort all flow’s cluster index by using the 
following relationship. 
 

⎩
⎨
⎧

∉
∈

=
δ
δ

ii
ik

G
,
,

 

 
The above process iteratively continues until no 
change in G . Each cluster remained in G  
represents flows that come from the same moving 
object with resolution specified by ls  and ε . 

 
5   Experimental Results 
 In order to investigate the proposed network, the 
experiments are performed in various 
configurations. Numbers that display in the flow 
clustered image are the order of the neuron 
construction. Circles exhibit the center of flow 
clusters. Fig. 4 shows normalized synthesis flows 
that are clustered to investigate on the vigilance 
parameter ζ , the flow horizontal sensitivityσ , and 
the flow vertical sensitivity γ . The values of 

0.1=σ  and 0.1=γ  indicate that these flows are 

fully sensitive to spatial position  x  and y , 
respectively. Fig. 5 and 6 demonstrate assigning 
both σ  and γ  to be 0.4. Results show that flows are 
less sensitive to x  direction (Fig. 5) and y direction 
(Fig. 6). This allows the flows to be further analyzed 
based on theirs region in the image which can be 
very useful in some applications, e.g. the application 
of lane detection in which the areas of an image are 
examined in different meaning.   
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Fig. 4 Normalized flows with 13.0=ζ , 0.1=σ , 
and 0.1=γ . 
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Fig. 5 Normalized flows with 13.0=ζ , 4.0=σ , 
and 0.1=γ . 
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Fig. 6 Normalized flows with 13.0=ζ , 0.1=σ , 
and 4.0=γ . 
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 Fig. 7 and 8 display results of 5.0=ζ  and 
07.0=ζ . Obviously, this vigilance parameter 

allows the different number of neuron being 
constructed. The higher value indicates the coarse 
flows in the same cluster while the smaller value 
indicates the similar flows in the same cluster. 
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Fig. 7 Normalized flows with 5.0=ζ , 0.1=σ , 
and 0.1=γ . 
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Fig. 8 Normalized flows with 07.0=ζ , 0.1=σ , 
and 0.1=γ . 
 

In order to investigate the flow angle 
sensitivity α  and the flow magnitude sensitivity β , 
the synthesis flows in Fig. 9 are converted to polar 
coordinate in Fig. 10. Fig. 11 and 12 show the flow 
clustering with 3.0=ζ , 1=α , and 0=β  (fully 
sensitive to the flow angle). By adjusting α   and 
β , results of flow clustering can be seen in Fig. 11 
to Fig. 16. Note that the result of clustering with 

0=α  in Fig. 15. This demonstrates that all flows 
are clustered with no angle sensitivity. Hence, all 
flows are located on a horizontal line. The results of 
different ζ  are depicted in Fig. 17 and 18 (coarse 

clustering with 6.0=ζ ) and Fig. 19 and 20 (fine 
clustering with 1.0=ζ ). 
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Fig. 9 Synthesis flows 
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Fig. 10 Flows from Fig. 9 in polar coordinate 
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Fig. 11 Flow clustering (number of flows : neuron) 
with 3.0=ζ , 1=α , and  0=β . 
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Fig. 12 Flow clustering of Fig. 11 in Cartesian 
coordinate 
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Fig. 13 Flow clustering with 3.0=ζ , 5.0=α , and 

0=β  
 

 
Fig. 14 Flow clustering of Fig. 13 in Cartesian 
coordinate 
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Fig. 15 Flow clustering with 3.0=ζ , 0=α , and 

5.0=β  
 

 
Fig. 16 Flow clustering of Fig. 15 in Cartesian 
coordinate 
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Fig. 17 Flow clustering with 6.0=ζ , 0.1=α , and 

0.1=β  
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Fig. 18 Flow clustering of Fig. 17 in Cartesian 
coordinate 
 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y   6327:1

  2:2  2:3  4:4
  3:5   3:6

  4:7
  2:8

  4:9
  2:10

  3:11

  4:12   3:13
 1:14

  3:15  2:16
  5:17

  6:18
  9:19

  7:20  4:21

 
Fig. 19 Flow clustering with 1.0=ζ , 0.1=α , and 

0.1=β  
 

 
Fig. 20 Flow clustering of Fig. 19 in Cartesian 
coordinate 
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(c) 

Fig. 21 Lucas-Kanade optical flow of images from 
(a) and (b) 
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(b) 

Fig. 22 Result of optical flow clustering  
 
 Fig. 21 shows Lucas-Kanade optical flow of classic 
Hamburg Taxi images. The resulting flow clustering 
is shown in Fig. 22 where [ ]Txρθλ =  is used 
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for a purpose of displaying. The parameters of the 
network are shown as follows: 
 

[ ]TFCs 215.0= 0.25ζ =  [ ]Tls 28.04.0=  

0.26ε =  
 
 Fig. 24 shows results of optical flow clustering from 
images with camera installed on a moving vehicle 
(see Fig. 23). Flows from such sequence of images 
come from both background and moving objects.  
The flow feature vector [ ]Tyxρθλ =  is 
utilized with the following parameters.  
   

[ ]TFCs 5.15.18.15.1= 3.0=ζ  

[ ]Tls 115.08.0=  3.0=ε  

 

 
 
Fig. 23 Lucas-Kanade optical flows from moving 
camera 
 

 
Fig. 24 Optical flow clustering before weight 
linking 
 

 
Fig. 25 Optical flow clustering after weight linking  

  

0 20 40 60 80
0

10

20

30

40

50

60

 
Fig. 26 Optical flows from moving camera 
 

 
Fig. 27 Flow clustering of Fig. 26 
 

 
Fig. 28 Flow clustering with elimination of clusters 
with number of flows less than 10 
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Fig. 29 Flow clustering with elimination of clusters 
with number of flows less than 50 
 

Results of flow clustering can be adjusted 
by the value of FCs . When the value of FCs  is 
small, it indicates the less sensitivity between flows. 
The new weight or neuron has less probability to be 
created. Each element in FCs  allows the network to 
be emphasis independently. This effect is the same 
for choosing the value of ls  in the stage II of flow 
clustering. The values of ζ  and ε  also provide the 
coarse and fine clustering results. The higher values 
results in the more differences between the clusters. 
Note that the misestimated flows are also filtered out 
by the adjustment of these network parameters. 
Additionally, flows from Fig. 26 can be smoothed 
by eliminating clusters that have number of flows 
less than some threshold. This shows that the 
presented system is highly adjustable which allows 
deploying this network to various kinds of 
applications. 
 
 
6   Conclusion 

This work presents the automatic optical 
flow clustering system. The modified self-
organizing feature map is used as a clustering 
system. This modified network is able to efficiently 
cluster flow vectors without any priori knowledge of 
initial number of flow clusters. The proposed system 
is also highly adjustable for flow angles, 
magnitudes, and spatial positions allowing the 
system to be flexible for using in different purposes. 
This also yields the ability to smooth out 
misestimated flow at some degrees. The results of 
flow segmentation are desirable and showing a 
multi-resolution clustering capability of the system. 
This allows the network to be able to segment flows 
of multiple moving objects having nearly same 
speeds. Further work can be focused on 
investigation relationship of each parameter of the 

network to obtain the more suitable network for 
different kinds of applications. 
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