
An Implementation of Parallel Accelerating System on Chip for DNA
Sequence Matching

Like Yan, Dazhou Wan, Tianzhou Chen, Zhenbao Huang

College of Computer Science, Zhejiang University,
Hangzhou, Zhejiang, PRC

{yanlike, wdz, tzchen}@zju.edu.cn, hzb0402@gmail.com

Abstract: - DNA sequence matching is one of the most crucial operations in molecular biology. Since huge
volume of DNA sequences, fast DNA sequence matching is significant in research and some kinds of
applications. In this paper, a heterogeneous multi-cores implementation in SoC is presented for DNA sequence
matching, to accelerate the comparison of the abundant DNA sequences information. We design a multi-core
SoC with a master-slave model where the master processor is the general purpose processor, which is responsible
for the task scheduling for the four slave computing units which are design for the acceleration of DNA sequence
matching. And the results of experiments show that the average speedup rate for sequence matching is 81.05
times compared to a software solution running on a quad-core PC on the same algorithm.

Key-Words: - accelerate, heterogeneous, SoC, DNA sequence matching, parallel, multi-core

1 Introduction
DNA turns out to be the most important
biomacromolecule in the view of modern science and
technology. It carries all the information that an
organism needs in metabolism and reproduction.
With the implement and rapidly development of the
human genome project and microorganism genome
project, people must understand the information on
DNA-level to direct the research on medicine,
biology and other related fields. And the development
of the DNA detecting method (ex. DNA chip) cause
the large increase of gene information. The number of
the base pair has already reached 10-billion. So large
amount not only offer an attractive market of gene
field, but also demand a lot of analysis tools.

DNA matching is very widely used in laboratories
and practice. The speed of matching is very limited
due to the incalculability of DNA base pairs and the
great complexity of DNA sequences. All these call
for acceleration to DNA matching process.
Fortunately, the feature of DNA sequence distribution
and the dispersion in DNA sequence matching bestow
it the possibility, and furthermore, the applicability
for parallel processing.

There are two matching methods: exact matching
and rough matching. Exact matching is to find out the
given string P in the longer string T [1]. And rough
matching is to find out the position of the DNA string
where the similarity is higher than the standard
similarity. The difference between the two matching
methods is the precision of matching.

In general purpose processors in the desktop or
workstation, the comparison is implemented using
two registers at a time. Such as, load the data to the

two registers in two times, compares the contents of
two registers by subtracting one register from the
other and save the result in condition registers. The
problem with this mechanism is that only two
registers is computed in a time. But in the
comparisons of the DNA info string, abundant of data
comparisons where started from deferent position are
independent. It will be speed up the comparisons by
parallel processing.

As the development of process technology, more
and more transistor can be put in a single chip, which
makes the implementation of complex system
possible in a chip named SoC. In a SoC, there are will
be one general purpose processing core and several
cores to deal with special computing, this kind of SoC
is called heterogeneous multi-core SoC.

Some kinds of heterogeneous multiprocessor
systems have been designed and implemented such as
the automotive real-time multi-core system [2] and
heterogeneous system in a real-time video and
graphics streams [3].

And some hardware accelerator had been designed
to speedup the DNA sequence matching. For instance,
[4] designs a hardware accelerator to implement the
Needman- Wunsch algorithm, which will increase the
performance of the DNA sequence matching. The
DNA sequence matching unit in [5] has 3 simple
instructions. But they are just used for do some simple
configurations before the matching operations. In the
two methods above, their functions are fixed and can
not fit the flexible situations, when the task is
changed.

With the multi-core SoC design method, the
parallelism can largely improved, which it’s a great

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 165

Table 1. Representation of
DNA base pairs.

Base Pairs of DNA Bits
Adenine 00
Cytosine 01
Guanine 10
Thymine 11

challenge to accelerate the DNA matching on a
multi-core SoC. Task level parallelism by executing
different task on separate cores simultaneously,
Different schemes have been developed, such as a
Static Scheduling Heuristic for Heterogeneous
Processors Task scheduling algorithms for
heterogeneous processors in [7], Master-slave tasking
on heterogeneous processors in [8] and so on.

In this paper, a SoC with heterogeneous
multi-cores with master-slave model for DNA
sequences matching is proposed. In this system, a
sequence matcher is designed to accelerate the DNA
sequence matching. And four matchers are integrated
in the system to speed up the matching parallel of
DNA sequences. And a corresponding algorithm
controlling and partition of the data and scheduling of
task is explored.

The rest of the paper is organized as follow.
Section 2 presents the design of the overall
framework of the heterogeneous multi-cores SoC
design for the system. Section 3 presents the design
and implementation of the components and system.
Section 4 reports the experiments and the results.
Finally, Section 5 gives a conclusion.

2 Multi-core SoC Framework

2.1 Overall framework
The basic principle of DNA sequencing is that the
four DNA base-pairs can be presented with 2 bits
characters Table 1 shows the
two bits representations for
these four types of DNA base
pairs. So It can be sequenced
with character string
matching algorithm on
general purpose processor.
However, the general purpose processor is more
suitable for control but not the comparison because
the general purpose design. And it is not optimized
for this kind of application, which results in poor
performance.

In order to accelerate the DNA sequence matching,
a special purpose processing unit should be designed
for better performance, which is named matcher. And
for the independence of each sequence segments, the
sequence matching can be done parallel. So more
then one matchers should be integrated to improve the
parallelism to further improve the performance.
Besides, a general purpose processor should be
adapted to control the matching, such as sequences
dispatching, the results merging and so on.

Based on the previous discussion, the DNA
matching SoC design should keep to the following
design principles:
1) Heterogeneous: A general purpose processor

core for controlling, dispatching, merging, and
several matchers for sequence matching. So that
the system can speed up the DNA matching by
parallel processing.

2) High Agility: Our design is not against any
specific matching algorithm. It’s only optimized
for the basic comparison operation.

3) High Integration: All the mentioned general
purpose processor core and matchers are
integrated on a single chip, so that the
communication cost can be reduced sufficiently.

With these 3 principles, an overall framework is
given in Figure 1. In this framework, a heterogeneous
multi-core architecture is proposed with master-slave
model: The master is a general purpose processor
takes control of the operation, task dispatching and
results merging. The slave cores are designed for the
comparison operations. All the processors are
connected to the on-chip-bus via the BIU. We also
designed On-Chip-Memory to store the target and
source DNA sequence and the matching result. Since
the size of the on-chip-memory is limited, a DMA
controller is required to transfer the data between the
on-chip-memory and the extern storage with higher
performance.

Matcher 1Matcher 0 Matcher n

PPC Dispatch

...

Begin

End

DNA
Sequences

Result 0 Result 1 Result n

Merging Matching
Result

Figure 2. Parallel matching flow.

Matcher 1Matcher 0 Matcher n ...

On Chip Bus

PPU On-Chip
MEM

DMA
Controllor

Mem
ControllorBIU

BIU BIU BIU

Figure 1. Overall Framework.

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 166

Table 2. All base, control, and status registers inside the Matcher.
Name Address Width Access Description

MODER 0x00 64 RW MODE REGISTER

INT_SOURCE 0x08 64 RW Interrupt Source Register

INT_MASK 0x10 64 RW Interrupt Mask Register

Seq_Reg_Data_h 0x18 64 RW The Data for Sequencing

Seq_Reg_Data_l 0x20 64 RW The low 64bits data for sequencing

Seq_Reg_Data_Bits 0x28 64(8) RW The length of Sequencing Data

Seq_Similarity 0x30 64(8) RW The similarity

Seq_Mask_h 0x38 64 RW High 32bits mask data for Sequencing

Seq_mask_l 0x40 64 RW Low 32bits mask data for Sequencing

MATCHER_Mode 0x48 3 Write/Read Mode of MATCHER execution

Src_mem_state 0x50 64 RW The State of Source Mem

Redirect_Addr 0x58 64(24) Write/Read Redirect address for Source Mem

Receive_BD 0x1000 64 Write/Read
The first 32bits indicates the length and

configure information; high 32bits indicates
the memory address MATCHER fetches.

Transmit_BD 0x1000 64 Write/Read

The first 32bits indicates the length and
configure information; high 32bits indicates
the memory address MATCHER transmits

2.3 Parallel processing flow
With the architecture shows in Figure 1, the DNA
sequences are matched parallel. The processing flow
is shown in figure 2 on the proposed architecture.
Because the exact matching is a extreme condition of
rough matching, only rough matching method is
explored in this paper.
The processing flow is shown below:
1) A task of DNA sequence matching arrives, the

master gets the target and source DNA sequence.
And it partitions the DNA sequence into several
segments and dispatches them to each matcher
via on-chip bus.

2) Every matcher will deal with the corresponding
segments and got the similarity and the offset
position in the sequence.

3) Then, the results are gathered from the output of
all matchers by the master, and the master can
elicit the final similarity and the offset position
for the target sequence in source sequence.

4) The final result can be transferred to the memory
or shown to the user.

3 Design and Implementation

3.1 The design of the matcher
The matcher is designed for the sequence matching.
The structure of matcher is shown in Figure 3, in
detail, it is constructed with Comparator, Controller,
Local Storage (Source Mem, Result Mem), Local
DMA, communication and configuration registers,
while the bus interface is implemented by IPIF
module, which is bus
agnostic, provided
some very basic
services, such as slave
attachment, address
decoding, byte
steering, and some
optional services that
can greatly simplify
the task of creating the
peripheral. Selecting
the DMA service and
the user-logic registers
support, our
MATCHER has the
ability to load and
store the data in the
memory.

The controller reads
the target sequence
and source sequence

from the Source Mem and forwards them to the
comparator. The data are executed XOR operation to
get which bits are the same. Then it works out the
similarity by counting the number of bits at state “1”.
The similarity and the address where the similarity
presents will be transferred to the Result Mem.

Table 2 describes all base, control, and status
registers inside the matcher IP Core. The Address
field indicates a relative address in hexadecimal.
Width specifies the number of bits in the register, and
Access specifies the valid access types to that register.
RW stands for read and write access, R for read-only
access.

3.2 Task Dispatching
The matcher can compare 128 bit data (64 DNA
base-pairs) every clock. It compares the Sequence
data and the data from database and provides the
result to its local Result Memory when the similarity
of the two exceeds the Similarity set by user. Then,

Comparer

Controller

Src_Data Seq_Reg_DataSimilarityMask

Src_Data [Similarity,
Redirect_Addr + Relative_Addr]

Registers

DMA

In_Data Out_Data

Source
Mem

Result
Mem

Figure 3. Matcher Hardware Structure

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 167

these result data can be transferred to external
memory through its local DMA.

In this SoC, the abundant of computation in the
comparing of DNA sequences is speeded up by the
matcher implemented in the FPGA. Figure 4 shows
the comparison and the parallelism implementation.
DNA sequence P is the source DNA data from the
Gene Bank database while the sequence T is the
target DNA sequence which wanted to comparison to
find the similar sequence in P from different start
point in different matcher.

The whole matching and task dispatching process
is show in the Figure 2, the PPU dispatch is
responsible for the whole data transmit and receive
between the source DNA sequences database and the
MEM IN M in each matcher, the PPU is also
responsible for the gather and manage the result of the
matching, such as the similarity and the offset
position and so on.

In this paper, it is designed to be the compile-time
task scheduling.

For one matcher, it is natural of doing the
comparing tasks is to partition a long DNA sequence
into segments of containing a certain length. Here it is
assumed that the source DNA sequence P is
partitioned to segments P1, P2, P3 ….. Pn, while the
target DNA sequence is partitioned to segments T1,
T2, T3 ….. Tm. And the result of the comparison of
the Pn and Tm is C(m, n), which contains the
information of position and the corresponding
similarity.

And the task scheduling algorithm can be described
as follow: Assume T is partitioned with the length LT,
and the P is partitioned with the length LP;

Initialize the result data group G(C (i,j),LT, LP, k)
where the C(i,j) is the information of similarity and
position to the comparison of Ti and Pj , and the k is
the value to represent how much C(i,j) has been
synthesized for this result data group. Here is the
comparing process in C style:
For (i=0; i<m; i++)
{

For (j=0;j<n; j++)

{
Execute the comparison of Ti and Pj and save the result

C (i,j)
}
Update the result date group G(C(i,j),LT ,LP ,k+1)
It is synthesizing the k* G(C(i,j),LT ,LP ,k+1) with the

C(i,j), here it is also can been represent how long the
matched sequence have been computed with the LP*k.
}

Finally, it will have the entirety information of the
result of matching, which can be analyzed and picked
up via the limit of the standard similarity value.

For the whole implemented system, it is designed
with four matchers to archive the parallelism of the
sequence matching.

They are comparing the sequences from different
start point, while the P2 used in Matcher 2 is the
combined of left excursion x of P1 used in Matcher 1
and the more x sequence after P1.

Here is the matcher operation in C style:

3.3 Implementation
In this paper, the system is constructed with only one
main core, and four slave matchers. The main core is
the general purpose processor, the PowPC405 CPU
on the Xilinx® ML403 development board. The
development board contains the Virtex®-4 FPGA
which include the hard PowerPC405 core, and also
the normal hardware device such as the memory, the
VGA interface, AC97 interface, UART, USB, and
Ethernet and so on. We implement the SoC include
the two kinds of processors and the normal device
control interface all in the FPGA chip.

DNA source sequence P

Sequence T in Matcher 1

…

Sequecnce T in Matcher 2

String T in Matcher k

Figure 4. Parallel implementation in comparison.

// Matcher task initiation
Void Matcher_Init(Unit_Seq * init_Seq,
Unit_Redirt_Addr * redirt_Addr, Unit_Matcher_Ctrl *
ctrl_matcher)
{
// set the initial data of sequencing task, including the
Seq_Reg_Data, //Seq_Reg_Data_Bits, Seq_Similarity,
Seq_Mask;
SetSeqData(init_Seq);
// set the redirect address of the local source memory0;
SetRedirtAddr0(redirt_Addr->addr0);
// set the redirect address of the local source memory1;
SetRedirtAddr0(redirt_Addr->addr1);
// set the Matcher control registers including
Matcher_Start and Matcher_Mode;
setMatcherControl(ctrl_matcher);
}
// Matcher DMA control initiation
Void Matcher_DMA_Init(Unit_DMA_Ctrl * ctrl_DMA);
// get Matcher local memory state including
Src_Mem0_State, Src_Mem1_State, Rsut_Mem0_State,
// Rsut_Mem1_State;
Void getMatcher_LocalMEM_State(Unit_LM_State *
state_LM)

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 168

Figure 5 shows the implemented heterogeneous
multi-cores system architecture, which is
implemented in the FPGA chip. The IBM®
CoreConnect® [9] on-chip bus is sufficiently flexible
and robust to support such embedded system, in the
Figure 6 we can see that the on-chip bus integrated the
processors, peripheral controller cores into one
system. All processors and the peripheral IP core are
connected to the on-chip bus with the IPIF
(Intellectual Property Interface). The Elements of
CoreConnect® include the processor local bus (PLB),
the on-chip peripheral bus (OPB), a bus bridge, and a
device control register (DCR) bus. High performance
peripherals connect to the high-bandwidth,
low-latency PLB. Slower peripheral cores connect to
the OPB, which reduces traffic on the PLB, resulting
in greater overall system performance [10].

In the implemented system the main processor and
the matchers are connected onto the PLB bus, the
memory and the LCD controller are connected onto
the PLB too, while the other device such as the UART,
Ethernet, and interrupt controller is connected onto
the OPB bus.

Table 3 shows the main detail information of the
system. Cooperating with the SystemACE standalone
software as the bootloader, the BSP and the
application for those four matchers, a full system with
the hardware and the software is implemented.

Table 3: The parameters of the implemented system.
Component Attribute

Main core: PowPC405 Speed:100M
Cache:32k

Slave: Matcher(four) Speed:100M
Mem in Matcher:64K+4K

PLB Speed:100M
Data width: 128bits

DDR memory 64M
Operation system Linux kernel 2.4.26

4 Experiments and Results
On the implemented system, we validate the system
in function and the performance:

First, input the test data:
1) registers Src_Mem_Stat, Rsut_Mem_State.

These two register can combine into on char type
register(8 bits) ， named group [Src_Mem_State,
Rsut_Mem_State], initiated such as 8`b0000-0000,
8`b1000-0000, 8`b0011-0000, 8`b0011-1000,
8`b0011-1100 and so on;

2) The source DNA sequence and the target DNA
sequence;

3) The target boundary of similarity.
Then the system starts working and results in form

of [similarity, relative_addre_positon] will be out put.
Finally, we synthesize these result with the target

data we expect, also in the format like [similarity,
adder], and we will know, it is the certain data we
expect.

Generally speaking, the processes are summarized
in the following steps:

Set the four part necessary data;
Start comparison;
Estimate the result;
Change another group data, repeat step 2) and 3).
At last, the results looks like shown in Table 4.

Table 4. The result of matching DNA sequences.
Serial No. Similarity Position in the source sequence

1 87 286326800
2 98 286334466
3 81 286334512

… … ….

To evaluate the performance of the implemented

system, a software solution with the same algorithm
is implemented on a PC equipped with quad-core
CPU, each of whose cores is general purpose
processing core. And the number of core is same to
the number of matchers.

In detail, the performance comparison in group of
different scale of DNA sequences. The running time
consumed by the two systems is compared for each
case. The data is measured in byte; while one byte can
hold four DNA pairs. And the matcher is 128-bit in
data width, while the width of the PLB is 128-bit. The
PC we used to test has the 1.7G quad-core CPU, with
a similar algorithm software solution.

The experiment results is shown in Figure 6, which
shows that the parallel accelerating SoC is effectively
improve the speed to the compared quad-core PC, and
the average speedup is 81.05 times. And it also shown
that the larger the sequence size is, the higher the
speedup is.

Figure 5. The implemented heterogeneous multi-core

SoC architecture.

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 169

5 Conclusion
In this paper, a heterogeneous multi-core
implementation of parallel accelerating SoC for DNA
sequence matching is proposed, in order to accelerate
the DNA sequence matching. This SoC is designed
with the master-slave model where the master
processor is a general purpose processor, which is
responsible for the tasks dispatching and results
merging, and for the four slave matchers which are
design for the acceleration of DNA sequence
matching. In this system, it is effectively improve the
speedup to the matching of the DNA sequences. The
results of experiments show that the average speedup
rate for sequence matching is 81.05 times compared
to a software solution on the same algorithm.

References
[1]. J. Kim, Computers Are from Mars, Organisms

Are from Venus, IEEE Computer, Vol.35, No.
7, 2002, pp.25-32.

[2]. J. Axelsson. A Case Study in Heterogeneous
Implementation of Automotive Real-Time

Systems. Proceedings of 6th International
Workshop on Hardware/Software Co-Design,
1998.

[3]. M. T. J. Strik, A. H. Timmer, J. L.
vanMeerbergen, and G.-J. van Rootselaar.
Heterogeneous multiprocessor for the
management of real-time video and graphics
streams. IEEE Journal of Solid-State Circuits ,
Vol.35, No.11, 2000, pp.1722-1731.

[4]. B Fagin, JGI Watt, R Gross. A Special-Purpose
Processor for Gene Sequence Analysis.
Computer Applications in the Biosciences,
Vol.4, 1993.

[5]. Benjamin O. Brown, Dr. Meng-Lai Yin, Dr. Yi
Cheng. DNA Sequence Matching Processor
Using FPGA and JAVA Interface.
Proceedings of the 26th Annual International
Conference of the IEEE EMBS. 2004,
pp.3043-3046.

[6]. Tien-Fu Chen,Chia-Ming Hsu, and Sun-Rise Wu,
Flexible heterogeneous multicore architectures
for versatile media processing via customized
long instruction words. IEEE Transactions on
Circuits and Systems for Video Technology,
Vol. 15, No. 5, 2005, pp. 659-672.

[7]. Hyunok Oh and Soonhoi Ha, A Static
Scheduling Heuristic for Heterogeneous
Processors, Proceedings of the Second
International Euro-Par Conference on
Parallel Processing Vol.2, 1996, pp.573-577.

[8]. Pierre-Franc¸ ois Dutot, Master-slave tasking on
heterogeneous processors. Proceedings of
International Parallel and Distributed
Processing Symposium, 2003.

[9]. CoreConnect Bus Architecture:
http://www-306.ibm.com/chips/techlib/techlib
.nsf/productfamilies/CoreConnect_Bus_Archit
ecture.

[10]. Xilinx® Corporation, ML40x EDK Processor
Reference Design.

1.8 0.26 11.3560.2
8

72.5 52.5

477

0

100

200

300

400

500

16,4 16,40 1024,4 1024,40

Target Size,Source Size (B,MB)

T
i
m
e

(
S
e
c
.
)

Quad-Core PC Parallel Accelarating SoC

Figure 6. The comparison of matching time between SoC and
PC

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 170

