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Abstract: The problems encountered in brewing commonly attributed to excess β-glucan levels include low 
extract yield, increased lauter runoff times, formation of gelatinous precipitates during aging, and decreased 
filtration efficiency. Several rheological techniques were used to determine C* or critical concentration where 
β-glucan aggregates begin to entangle and there was a relationship between intrinsic viscosity and C*.  This 
study reports applying Probabilistic Neural Network (PNN)  to get new data set of relation between reciprocal 
of logarithm of relative viscosity 1/log (ηrel) and β-glucan concentration in seven model buffer systems and 
thus could be used for C* valure determination with better statistical correlation. 
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1   Introduction 
1.1  β-Glucan  
 
β-Glucan are complex carbohydrates composed of 
mixed linkage (1→ 3), (1→ 4) β-D-glucose 
polymers. They comprise an important component 
found in the cell walls of barley and oats and to a 
lesser extent in other cereal grains. They are 
nonstarchy polysaccharides found in the aleurone 
cell layer and in the cell walls of the endosperm [1].  
 
1.2  Beer Filtration and Beta-Glucan Gel 
Formation 
 
Beta-glucan polymers present in beer can increase 
beer consistency and impair filtration. Membrane 
filtration depends upon retention of solids at the 
surface of the filter. Plaques are believed to develop 
on membrane surfaces during clogging. The 
membrane initially behaves like a cake filter, and the 
flow rate is reduced proportional to the volume that 
has passed through the filter. Mechanism has an 
exponential dependency, meaning   that   blocking   
of   the    membrane pores quickly becomes the 
dominant mechanism [2]. A mechanism of β-glucan 
gel formation where the worm-like conformation of 
the polymer linked by β-1,3-sections (at irregular 
intervals) hinder extensive intermolecular 
association was proposed [3]. The intermolecular 
junction zones are indicated by the aggregation of 

double helices in Fig. 1, each straight line 
representing blocks of β-1,4-linkages [3]. 
 
1.3  Determination of Intrinsic Viscosity and 
Critical Concentration  
 
When a polymer is dissolved in a solvent, there is a 
noticeable increase in the viscosity of the resulting 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  Schematic representation of a proposed 
mechanism for gel formation by beer β-glucans [3]. 
 
solution. The viscosity of pure solvents and 
solutions can be measured and various values 
calculated from the resulting data [4]. The intrinsic 
viscosity, [η], can be defined as the limit of the 
reduced viscosity (ηred; the ratio of specific viscosity 
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to concentration) or the inherent viscosity (ηinh; the 
ratio of log relative viscosity to concentration) as the 
polymer concentration approaches zero: 
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where ηs is viscosity of the solvent, ηsp is specific 
viscosity, and C is concentration [5].   
 
The concentration dependence of a solution 
viscosity of polymers can be described by Martin 
equation up to moderate concentrations, and this 
equation constant provides a measure of polymer-
polymer interactions in a given solvent. The Martin 
equation can be applied to determine intrinsic 
viscosity and can be described as follows: 
 
          ηsp /C[η] = exp (Km C [η])  (2)           
 
where Km is a constant.  
 As the concentration of polymer increases, 
overlapping of macromolecular chains becomes 
important and the relative viscosity of solution 
increases significantly with an increase in 
concentration, up to a critical concentration. This 
region, called the semidilute regime, is found in the 
C[η] range of 1.0 to 10.0. Above the critical 
concentration (C*), the entanglements between 
polymers increase sharply and so does the viscosity 
of solution with concentration, and it occurs when 
C[η] > 10.0. The Martin equation best described the 
viscosity-concentration relationship of a number of 
dilute and moderately concentrated polymer 
solutions. Furthermore, the critical concentration 
(C*) is reported to be equal to C when C[η] = 1.0 
[6]. Lineman and Kruger [7] had determined critical 
concentration based on the representation of the 
reciprocal logarithm of the relative viscosity 1/log 
(ηrel) as a function of the concentration where the 
relative viscosity is defined as ηrel = η/η0. The 
entanglement or overlap concentration C* is defined 
as the inflection point in a plot of concentration as a 
function of 1/log (ηrel) as shown in Fig. 2. 
Like most polymers, the effect of β-glucan levels on 
apparent viscosity is linear only at low 
concentrations. With increasing concentration the 
apparent viscosity rises exponentially. The critical 
concentration is defined as the concentration that 
corresponds to the transformation from a dilute to a  
 
 

 
 
 

 
 
 
 
 
 
 
Fig. 2 Determination of overlap concentration C* 
from a plot of concentration as a function of 1/log 
(ηrel).  
 
semi-dilute solution in which the dissolved molecule 
coils start to overlap each other [8]. Fig. 2 depicts 
the determination of overlap concentration C* from 
a plot of concentration as a function of 1/log (ηrel). 
 
 
2 Probabilistic Neural Network 
Classifier 
 
 Probabilistic neural networks can be used for 
classification problems. When an input is presented, 
the first layer computes distances from the input 
vector to the training input vectors, and produces a 
vector whose elements indicate how close the input 
is to a training input. The second layer sums these 
contributions for each class of inputs to produce as 
its net output a vector of probabilities. Finally, a 
compete transfer function on the output of the 
second layer picks the maximum of these 
probabilities, and produces a 1 for that class and a 0 
for the other classes. The architecture for this system 
is shown below. 

 
Fig. 3  The architecture of a Probabilistic Neural     
            Network [9].  
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it is assumed that there are Q input vector/target 
vector pairs. Each target vector has K elements. One 
of these element is 1 and the rest is 0. Thus, each 
input vector is associated with one of K classes. 

 
The first-layer input weights, IW1,1 (net.IW{1,1}) 
are set to the transpose of the matrix formed from 
the Q training pairs, P'. When an input is presented 
the ||dist|| box produces a vector whose elements 
indicate how close the input is to the vectors of the 
training set. These elements are multiplied, element 
by element, by the bias and sent the radbas transfer 
function. An input vector close to a training vector is 
represented by a number close to 1 in the output 
vector a1. If an input is close to several training 
vectors of a single class, it is represented by several 
elements of a1 that are close to 1. 
The second-layer weights, LW1,2 (net.LW{2,1}), are 
set to the matrix T of target vectors. Each vector has 
a 1 only in the row associated with that particular 
class of input, and 0's elsewhere. (A function 
ind2vec is used to create the proper vectors.) The 
multiplication Ta1 sums the elements of a1 due to 
each of the K input classes. Finally, the second-layer 
transfer function, compete, produces a 1 
corresponding to the largest element of n2, and 0's 
elsewhere. Thus, the network has classified the 
input vector into a specific one of K classes because 
that class had the maximum probability of being 
correct [9]   
Neural networks can provide several advantages  
over concentional regression models. They are 
claimed to possess the property to learn from a set 
of data without the need for a full specification of 
the decision model; they are believed  to 
automatically provide any needed data 
transformations [10]. Neural net work was applied 
for rapid assessment of microbiological quality of 
bulk raw milk [11] A novel probability neural 
network (PNN) could classify data for both 
continuous and categoric input data types. A 
mixture model of continuous and categorical 
variables was proposed to construct a probability 
density function (PDF) that is the key part for the 
PNN [12].  Probabilistic Neural Networks (PNN) 
had been proposed  to explore classifying 
microarraydata patterns in gene expressions. The 
approach employs representative data that has 
patterns already identified to conduct training and 
testing of the classification capabilities of the PNN. 
A high level classification rate could be achieved 
with the model with low time and model complexity 
[13].   
The performance of power system dynamic load 
modeling using adaptive-network-base fuzzy 

inference system (ANFIS) was compared with 
traditional architectures. The ANFIS models could 
represent nonlinear systems performance accurately, 
and they were promising for dynamic load models. 
Computer simulations show excellent results using 
this approach for power system dynamics [14] 
An approach for predicting electric power system 
commercial load using a wavelet neural network. 
Morlet and Mexican hat wavelets were used to 
generate the transfer functions of hidden layer nodes 
of the neural network. A wavelet neural network 
was trained for a particular power system load. 
Results showed that wavelet neural networks may 
outperform traditional architectures in 
approximation and forecasting problems related to 
electric power system [15].  
 
 
3  Data Acquisition and Preprocessing 
 
The relation between reciprocal logarithm of  
relative viscosity (1/log (ηrel)) and β-glucan 
concentration data was obtained from an experiment 
described in Oonsivilai et al. [1],[4].  This 
experiment used seven buffer system model to study 
effect of pH, maltose, and ethanol in buffer on 
rheological properties of β-glucan suspensions. In 
addiiton, from a plot of relation of reciprocal 
logarithm of  relative viscosity (1/log (ηrel)) and β-
glucan concentration, critical concentration (C*) 
could be determined by piecewise regression by 
Systat (SPSS Inc, IL). The difficulty of C* 
determination by this method is how to get good 
correlation (r2) by piecewise regreession due to 
small amount of data points. In experiment, it is 
complex to vary β-glucan concentration in very 
small increment due to its polymer like suspension 
characteristics and also cost  benefit. 
The PNN became interested and useful in way of 
application for determination of the C* value by 
getting more data points and piesewise non linear  
regression method could be applied and get more 
accurate C* value and better statistical correlation 
results as shown in Table1. 
  
The comparison between experiment data set and 
PNN data set are shown in Fig.4 to Fig10.  
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Fig 4.  Comparison between two data set (A and B); 
A: Experimental data of β-glucan in high ethanol 
buffer system, B: PNN data of β-glucan in high 
ethanol buffer system. 
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Fig 5.  Comparison between two data sets (A and 
B); A: Experimental data of β-glucan in high 
ethanol buffer system, B: PNN data of β-glucan in 
low ethanol buffer system. 
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Fig 6.  Comparison between two data set (A and B); 
A: Experimental data of β-glucan in high ethanol 
buffer system, B: PNN data of β-glucan in control 
buffer system. 
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Fig 7.  Comparison between two data set (A and B); 
A: Experimental data of β-glucan in high ethanol 
buffer system, B: PNN data of β-glucan in high 
maltose buffer system. 
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Fig 8.  Comparison between two data set (A and B); 
A: Experimental data of β-glucan in high ethanol 
buffer system, B: PNN data of β-glucan in low 
maltose buffer system. 
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Fig 9.  Comparison between two data set (A and B); 
A: Experimental data of β-glucan in high ethanol 
buffer system, B: PNN data of β-glucan in low pH 
buffer system. 
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Figure 10.  Comparison between two data set (A and 
B); A: Experimental data of β-glucan in high 
ethanol buffer system, B: PNN data of β-glucan in 
high pH buffer system. 
 
Table 1. Comparision of the critical concentration  
value from experiments and from PNN model.  
 

 
 

Buffer 

condition 

C*(old) 

mg/ml 

C*(new) 

mg/ml 

r2 

(old) 

r2  

(new) 

High 

ethanol 

0.65 0.64 967 0.967 

Low 

ethanol 

0.27 0.26 0.942 0.975 

Control 0.32 0.32 0.912 0.956 

High 

maltose 

0.21 0.25 0.924 0.969 

Low 

maltose 

0.31 0.31 0.911 0.959 

Low pH 0.39 0.4 0.965 0.983 

High pH 0.31 0.32 0.904 0.968 
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 Practically, in laboratory when we need to 
determine the critical concentration value (C*), it 
was time consumed and quite complex to vary 
concentration in very samll increment. The reason 
due to the natural polymer like solution behavior of 
β-glucan solutions especially when the 
environements such as pH, temperature, ethanol 
concentration , and maltose concentration in 
suspensions change, the rheoligical properties of 
solutions would change noticeably. Thus applying 
PNN model by using  Parzen Probabilistic density 
functions (pdf) estimators which asymptotically 
approach the underlying parent density provided that 
it is smooth and continuous to get new data set that 
composed of more data points and then use this data 
set for determination of the C* value would be really 
helpful and more adequate.  
 
 
4   Conclusion 
  
Applying the PNN model to get new β-Glucan data 
set  for determination of C* value gave the new C* 
value which showed better statistical correlation 
from piecewise non linear regression. Moreover, this 
method could be used in C* value determination in 
other polymer behavior like solutions.  Especially in 
brewing process that the C* value of β-glucan is 
very important for monitoring in process of beer 
filter.  Finally, PNN is model that very useful in data 
analysis especiallly  in physical properties analysis 
of food or concentrated polymer like solutions in 
very condition such as pH and temperature. 
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