
Japanese Dependency Analysis
Based on Improved SVM and KNN

ZHOU HUIWEI and YANG YAGE and YU TONG and HUANG DEGEN

Department of Computer Science and Engineering
Dalian University of Technology

 DaLian , LiaoNing
P.R. CHINA

zhou_huiwei@163.com

Abstract: - This paper presents a method of Japanese dependency structure analysis based on improved Support
Vector Machine (SVM). Japanese dependency analyzer based on SVM has been proposed and has achieved high
accuracy. The efficient way to improve dependency accuracy farther is to increase the training data. However, the
increase of training data will bring a great amount of training cost and decrease the parsing efficiency. We delete
those samples that are unused or not good to improve the classifier’s performance, and then train the reduced
training set with SVM to obtain the final classifier. Furthermore, we combine improved SVM with K nearest
neighbors(KNN) to improve the performance of dependency analyzer. Experiments using the Kyoto University
Corpus show that the method outperforms previous systems as well as the dependency accuracy and the parsing
efficiency.

Key-Words: - Japanese dependency analysis, Support Vector Machine(SVM), Improved SVM, Large training set
SVM (LSVM), Nearest Neighbor-SVM (NN-SVM), K nearest neighbors(KNN)

1 Introduction
Dependency analysis has been recognized as a basic
process in Japanese sentence analysis. And a number
of studies have been proposed. Japanese dependency
is usually in terms of relationship between phrasal
units called bunsetsu segments (hereafter segments).

In recent years, as large-scale tagged corpora have
become available, a number of statistical parsing
techniques using such tagged corpora have been
developed [1] [2] [3] [4]. The previous dependency
analysis is divided into two approaches. One approach
is based on a statistical model [1] [2] [3]. These
models need to calculate the probabilities for all
possible dependencies in a sentence to obtain the
optimal set of dependency. It is not efficient. The other
approach is a cascaded chunking model [4] based on
SVM [5]. The method is simple and efficient. It
achieves high accuracy. The further way to improve
accuracy is to increase the training data. However, the
increase of training data will bring a great amount of
training cost. And the parsing efficiency will be
affected as the number of support vectors increased.

In the training data, there are many examples that
are unused or not good to improve the classifier’s
performance. If these examples can be deleted, the
training cost will be decreased and the analysis

accuracy as well as efficiency will be improved. This
paper presents a method of Japanese dependency
structure analysis based on improved SVM. First, we
train an initial classifier with a small training set, and
then prune the large training set with the initial
classifier to obtain a small reduction set. And then, we
prune the training set continually, reserve or delete a
sample according to whether its nearest neighbor has
same class label with itself or not. Training with the
reduction set, final classifier is obtained. Furthermore,
we combine improved SVM with KNN to improve the
performance of dependency analyzer. Experiments
using the Kyoto University Corpus show that the
presented method outperforms previous systems as
well as improves the parsing and training efficiency.

2 Cascaded Chunking Model Using
SVM

2.1 Support Vector Machine (SVM)
Support Vector Machine (SVM) [5] is one of the
binary linear classifiers introduced by Vipnik.
Suppose l training examples)1(),,(liy ii ≤≤x are
given, where xi is a feature vector in n dimensional

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 140

mailto:zhou_huiwei@163.com

feature space, yi is the class label {+1, -1} (positive or
negative) of xi. SVM finds a hyperplane 0)(=+⋅ bxw
which separate the training examples and has
maximum margin between two hyperplane

 and1)(≥+⋅ bxw 1)(−≤+⋅ bxw . The optimal
hyperplane with maximum margin can be found by
solving the following quadratic programming
problem.

libxws

ii ,...,2,1 ,0)(y ubject to

w
2
1 min 2

=≥+⋅

 (1)

The decision function can be written as:

∑
∈

+⋅=
sv

ii bxxyxf
ix

i])(sgn[)(α (2)

 Where iα is the Lagrange multiplier corresponding
to each constraint. The Kernel function

)()()(jiji xxxxK φφ ⋅=, can reduce the computational
overhead when the training example x is projected
onto a high dimensional space by using projection
function φ . Among the many kinds of Kernel
functions, the d-th polynomial kernel:

 is used. Where d is the
dimension of the polynomial functions.

(d
jiji xxyxK 1)(+⋅=,)

 Further more, the optimization problem can be
written into the following maximum problem.

∑ ∑
= =

⋅−=
l

i

l

ji
jijijii xxKyyL

1 1,
)(

2
1)(αααα

 (3)

 Finally, the label of an unknown example is
decided by the following function:

∑
∈

+⋅=
sv

iii bxxKyxf
ix

])(sgn[)(α (4)

SVM estimate the label of an unknown example
whether sign of is positive(+1) or
negative(-1).

)(xf

2.2 Japanese dependency Analysis Model
We define a sentence as a sequence of segments

mbbbB ,...,, 21= and its syntactic structures as a

sequence of dependency patterns
)1(),...,2(,)1(−= mdepdepdepD , where jidep =)(

means that segment bi depends on (modifies) segment
bj. In this frame-work, we suppose that the
dependency sequence satisfies the following
constrains.
1. Except for the rightmost one, each segment depends
on exactly one of the segments appearing to the right.
2. Dependencies do not cross each other.

In order to use SVM for dependency analysis, we
adopt a sample method: We take a pair of segments
that are in a dependency relation as a positive data, and
a pair of segments that are not in a dependency relation
as a negative data.
 Japanese dependency analysis algorithm is as
follows:
1. Put an O tag on all segments since the dependency
relation of each one is undecided.
2. For each segment with an O tag, decide whether it
modifies the segment on its immediate right hand side.
If so, the O tag is replaced with a D tag.
3. Delete all segments with a D tag that are
immediately followed by a segment with an O tag.
4. Terminate the algorithms if a single segment
remains, otherwise return to step 2 and repeat.

母は 私に いろいろな 物を 買ってくれました。

(Mother bought many thing for me .)

母は 私に いろいろな 物を 買ってくれました。
Mother me many thing buy
Initialization
Input: 母は 私に いろいろな 物を 買ってくれました。
Tag: O O O O O

Input: 母は 私に いろいろな 物を 買ってくれました。
Tag: O O D(Del.) D O

Input: 母は 私に 物を 買ってくれました。
Tag: O D(Del.) D O

Input: 母は 物を 買ってくれました。
Tag: O D(Del.) O

Input: 母は 買ってくれました。
Tag: D(Del.) O

Input: 買ってくれました。
 O(Finish)
Fig. 1. Example of the parsing process with cascaded
chunking model

Figure 1 shows an example of the parsing process
and the result. In training, the model simulated the
parsing algorithm by consulting the correct answer
from the training annotated corpus. In testing, the
model consults the trained system and parses the input
sentence with the parsing algorithm.

The simplest and most effective way to improve
accuracy is to increase the training data. However, the
increase of training data will bring a great amount of

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 141

training cost. And the support vectors of the trained
model will increase. This will make the analysis time
too long to apply the trained model actually.

In the training data, there are many examples that
are unused or not good to improve the classifier’s
performance. If these examples can be deleted, the
training cost will be decreased and the analysis
accuracy as well as efficiency will be improved.

3 Japanese Dependency Analysis
Based on improved SVM
Several attempts have been made to improve
classification accuracy of SVM by prune the training
set [6] [7]. We adopt the approach called Large
training set SVM (LSVM). It prunes the large training
set with the initial classifier according to the distance
from a sample to the separate hyperplane. And then,
we adopt the other approach called Nearest
Neighbor-SVM (NN-SVM). It deletes a sample if its
nearest neighbor has different class label with itself. In
this paper, we use LSVM and NN-SVM (here after we
call it NN-LSVM) to prune the training set. Then train
with the reduction set to obtain final classifier.
 To improve the performance of dependency
analyzer further, we combine improved SVM with
KNN. In the class phase, the algorithm computes the
distance from the test sample to the optimal
hyperplane of SVM in feature space. If the distance is
greater than the given threshold, the test sample would
be classified on SVM; otherwise, the KNN algorithm
will be used.

3.1 LSVM
LSVM is a learning strategy of SVM used to large
training set. When we use a large training set, in order
to reduce the computation cost and do not affect the
accuracy of the classifier, we prune the training data as
follows:
1. Abstract a small training set S from a large training
set L. Train an initial classifier with the small training
set S. The size of the small training set S is decided
under the following condition:

(1) The training cost is not big when training with it.
 (2) The accuracy of the classifier is adequacy when

training with it.
2. Prune the large training set L with the initial
classifier to obtain a small reduction set. Then training
with the reduction set, finial classifier is obtained. The
prune way is shown in figure 2.

 The separate hyperplane of the initial classifier is
H. The distance from a sample S to the separate
hyperplane H is . Remain the sample
if

)0(≥dd
εε +<<− 11 d . Otherwise, delete it. We can

control the size of the reduce set and the classifier
accuracy by adjust the threshold)10(<< εε . In fact,
the optimal classifier can be obtained by adjust the
thresholdε .

 1+ε 1-ε 1-ε 1+ε

 H+ H H—

the remain

area

the remain

area

Fig. 2. The pruning figure of the LSVM

This prune strategy is designed along with that the

classifier is related with the support vectors only and
unrelated with the other samples. After pruning with
this strategy, the remained samples are useful to
classification and the deleted samples are useless or
even reactive to classification.

3.2 NN-SVM
SVM focuses on the samples near the boundary in
training time, and those samples intermixed in another
class are usually no good to improve the performance
of classier. On the contrary, they may greatly increase
the cost of computation and their existence may lead to
overlearning and decrease the generalization ability.

NN-SVM is an improved SVM that can improve the
generalization ability of classifier. It reserves or
deletes a sample according to whether its nearest
neighbor has same class label with itself or not, then
trains the new set with SVM to obtain a classifier.

We prune the training data as follows:
Find the nearest neighbor of each sample. If a

sample has the same class with its nearest neighbor
reserve it, otherwise delete it.

The distance between the two vectors
)),,,((21 niiiii xxxxx L= and

is as:
)),,,((21 njjjjj xxxxx L=

 ∑
=

−=
n

k

k
j

k
iji xxxxD

1

2)(),((5)

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 142

3.3 SVM-KNN
Analyzing the classification results, we find that the
misclassified samples are mainly near the hyperplane.
This means that we should use the information of the
samples near the optimal hyperplane to improve the
performance of the classifier. Based on SVM theory,
the samples near the optimal hyperplane are mainly
support vectors. In the meantime, the classifier based
on SVM is regard as a 1NN classifier in which only
one representative point is selected for each class.
Therefore, A SVM-KNN classifier combined SVM
with KNN is presented to improve the performance of
SVM classifier [8]. The algorithm of SVM-KNN is
described as follows:
Suppose T is the testing set.
(1) if T ≠ Φ , select x∈T , else stop;
(2) compute the distance g(x) from the test sample to
the hyperplane of SVM as described in (6);
(3) if g(x) > ε , ε ∈[0,1], output f (x) = sgn(g(x)),
else use KNN algorithms and output the returned
results;
(4) T ← T − {x}, go to step (1)

The distance from the test sample to the hyperplane
of SVM in feature space is as:

 (6) ∑
∈

−=
svx

iii
i

bxxKyxg),()(α

The distance from each test sample to each
reference point is as:

),(),(2),()()(),(iiiii xxKxxKxxKxxxxd +−=−= φφ (7)
Where ix is the support vector.

4 Experiments And Discussion

4.1 Experiments Setting
We use Kyoto University text corpus (Version 3.0)
consisting of articles of Mainichi Newspaper. The
sentences from the articles on January 1st, 3rd to 9th
are used for the training data, and the sentences from
the articles on January 10th are used for the test data.
Our experiments are under the condition 3=d
(dimension of the polynomial functions used for the
Kernel function).

The features used in the dependency parsing
process are shown in Table 1. The features include
static features and the dynamic features

4.2 Experimental Results

4.2.1 Based on improved SVM
We train an initial classifier with the sentences from
articles on January 1st. Then we prune the data on
January 1st, 3rd to 9th with LSVM (9.0=ε ,
experiments show that the parsing accuracy is best
when 9.0=ε). We prune the training data continue
with NN-SVM and obtained the final classifier. Test
the data on January 10th based on SVM, LSVM and
NN-LSVM. The experimental results are shown in
table 2.

Table 2 shows the dependency accuracy and the
sentence accuracy are improved using large training
data set based on SVM(86.86%→89.29%, 41.50%→
47.53%). The time required for training and parsing
are significantly increased(4minutes → 908minutes,
0.26sec./sentence→1.7sec./sentence).

Table 1. Features used in the dependency parsing process

left/right
segments

Head Word
(surface-form,
POS,
POS-subcategory,
inflection-type,
inflection-form),
Functional Word
(surface-form,
POS,
POS-subcategory,
inflection-type,
inflection-form),
brackets,
quotation-marks,
punctuation-marks,
position in
sentence
(beginning, end)

Static
Features

Between two
segments

Distance
(1,2-5,6-),
case-particles,
brackets,
quotation-marks,
punctuation-marks

The segments
which modify the
current candidate
modifee or
modifer

Form of inflection
represented with
Functional
Representation

Dynamic
Features

The segment
which is modified
by the current
candidate modifee

POS and
POS-subcategory
of Head word

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 143

We use LSVM and NN-LSVM to prune the training
data. Even though the number of examples used for
LSVM and NN-LSVM is less than that for SVM,
dependency accuracy and sentence accuracy are
improved(89.296% → 89.86%, 47.53% → 49.14%).
And the time required for training and parsing are
evidently reduced((908minutes → 129minutes,
1.7sec./sentence→0.8sec./sentence).

Experiments show that the improved SVM not only
reduces the training cost greatly but also obtains a
classifier that has better accuracy and efficiency than
the classifier obtained by training large set directly.

Training with LSVM increases the training cost of
adjusting the threshold. However the increased cost is
time cost instead of memory cost. This cost increases
linearly. SVM requires O(n2) training cost, (where n is
the number of examples.). It includes time cost and
memory cost, and increases with the square of the
number of examples.

Table 2. Results based on NN-LSVM
Model

Training
data (days)

SVM

1

SVM

8

LSVM

8

NN-
LSVM

8

Dependency
Acc. (%)

86.86 89.29 89.35 89.86

Sentence
Acc. (%)

41.50 47.53 47.58 49.14

Parsing
Time (sec./
sentence)

0.26 1.7 1.5 0.8

The number
of support
vectors

5485 35181 32306 17165

The number
of examples

15052 132022 104380 97727

Training
Time
(minutes)

4 908 643 129

4.2.2 Combined improved SVM with KNN

Table 3 shows that the approach combined improve
SVM and KNN achieved higher dependency accuracy
and sentence accuracy than the improved SVM when k
is between 27 and 33 in the confidence ε =0.1.
However, the approach combined improved SVM and
KNN cannot performance better than the improved
SVM when 2.0≥ε . This means that the misclassified
samples are mainly near the hyperplane.

Table 3. Results based on improved SVM and KNN
 Dep.

Acc. (%)
(ε =0.1)

Sen.
Acc. (%)
(ε =0.1)

Dep.
Acc. (%)
(ε =0.2)

Sen.
Acc. (%)
(ε =0.2)

K=1 89.75 48.29 89.69 48.02
K=5 89.70 48.35 89.68 48.15
K=10 89.75 48.96 89.65 48.96
K=20 89.78 48.22 89.41 47.41
K=25 89.91 48.82 89.72 48.49
K=26 89.98 49.09 89.81 48.62
K=27 90.02 49.23 89.84 48.69
K=28 90.01 49.16 89.84 48.96
K=29 90.00 49.16 89.84 48.76
K=33 90.00 49.16 89.84 48.76

4.3 Comparison with Related Work
The results of our model and the recent Japanese
Dependency Analysis model (cascaded chunking [3],
ME [1], ME + posterior context [2]) are summarized
in table 4. Dependency accuracy and sentence
accuracy are improved using improved SVM and
KNN. The time required for training and parsing
cannot be compared since the computers used for each
experiment are different.

Table 4. Comparison with the related work
Model Training

Corpus
(# of
days)

Dependency
Acc. (%)

Sentenc
e Acc.
(%)

Improved SVM
and KNN

Kyoto
Univ. (8)

90.02 49.23

Improved SVM Kyoto
Univ. (8)

89.86 49.14

Cascaded
chunking[4]

Kyoto
Univ. (8)

89.29 47.53

Probabilistic
(ME)[1]

Kyoto
Univ. (8)

87.14 40.60

Probabilistic
 (ME + posterior
context)[2]

Kyoto
Univ. (8)

87.93 43.58

6 Conclusion
This paper presented a method for Japanese
dependency analysis that using improved SVM and
KNN. The improved SVM delete those samples that
are unused or not good to improve the classifier’s
performance, and then trained with the reduction set to
obtain the final classifier. Experiments show that the
improved SVM not only reduces the training cost

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 144

greatly but also obtains a Japanese analyzer that
outperforms the analyzer obtained by training large set
directly with respect to accuracy and efficiency.
Furthermore, we combined improved SVM and KNN.
The experimental results show that that the mixed
algorithm can improve the dependency accuracy
compared to improved SVM.

References:
[1] Kiyotaka Uchimoto, Satoshi Sekine, Hitoshi

Isahara, Japanese Dependency Structure Analysis
Based on Maximum Entropy Models. In
Proceedings of the EACL, 1999, pp. 196-203

[2] Kiyotaka Uchimoto, Masaki Murata, Satoshi
Sekine, Hitoshi Isahara, Dependency Model using
posterior context. In Proceedings of Sixth
International Workshop on Parsing Technologies,
2000, pp. 321-322

[3] Taku Kuto, Yuji Matsumoto, Japanese
Dependency Structure Analysis Based on Support
Vector Machines. In Empirical Methods in Natural
Language processing and Very Large Corpora,
2000, pp. 18-25

[4] Taku Kuto, Yuji Matsumoto, Japanese
Dependency Analysis using Cascaded Chunking.
In Conference on Computational Natural
Language Learning, Taipei, Taiwan, 2002, pp.
63-69

[5] Vapnik, V.N., The Nature of Statistical Learning
Theory. Springer-Verlag, Berlin, 1995

[6] LI Hong-Lian, WANG Chun-Hua, YUAN
Bao_Zong, ZHU Zhan-Hui, A Learning Strategy
of SVM to Used Large Training Set. Chinese
Journal of Computer, Vol. 27, 2004, pp.715-719

[7] LI Hong-Lian, WANG Chun-Hua, YUAN
Bao-Zong: An Improved SVM, NN-SVM.
Chinese Journal of Computer, Vol. 26, 2003,
pp.1015-1020

[8] LI Rong, YE Shi-wei, and SHI Zhong-zhi,
SVM-KNN Classifier-a New Method of
Improving the Accurracy of SVM Classifier, Acta
Electronica Sinica, vol. 30, 2002, pp.745-758

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 145

