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Abstract: - This paper presents a method of Japanese dependency structure analysis based on improved Support 
Vector Machine (SVM). Japanese dependency analyzer based on SVM has been proposed and has achieved high 
accuracy. The efficient way to improve dependency accuracy farther is to increase the training data. However, the 
increase of training data will bring a great amount of training cost and decrease the parsing efficiency. We delete 
those samples that are unused or not good to improve the classifier’s performance, and then train the reduced 
training set with SVM to obtain the final classifier. Furthermore, we combine improved SVM with K nearest 
neighbors(KNN) to improve the performance of dependency analyzer. Experiments using the Kyoto University 
Corpus show that the method outperforms previous systems as well as the dependency accuracy and the parsing 
efficiency. 
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1   Introduction 
Dependency analysis has been recognized as a basic 
process in Japanese sentence analysis. And a number 
of studies have been proposed. Japanese dependency 
is usually in terms of relationship between phrasal 
units called bunsetsu segments (hereafter segments). 

In recent years, as large-scale tagged corpora have 
become available, a number of statistical parsing 
techniques using such tagged corpora have been 
developed [1] [2] [3] [4]. The previous dependency 
analysis is divided into two approaches. One approach 
is based on a statistical model [1] [2] [3]. These 
models need to calculate the probabilities for all 
possible dependencies in a sentence to obtain the 
optimal set of dependency. It is not efficient. The other 
approach is a cascaded chunking model [4] based on 
SVM [5]. The method is simple and efficient. It 
achieves high accuracy. The further way to improve 
accuracy is to increase the training data. However, the 
increase of training data will bring a great amount of 
training cost. And the parsing efficiency will be 
affected as the number of support vectors increased.  

In the training data, there are many examples that 
are unused or not good to improve the classifier’s 
performance. If these examples can be deleted, the 
training cost will be decreased and the analysis 

accuracy as well as efficiency will be improved. This 
paper presents a method of Japanese dependency 
structure analysis based on improved SVM. First, we 
train an initial classifier with a small training set, and 
then prune the large training set with the initial 
classifier to obtain a small reduction set. And then, we 
prune the training set continually, reserve or delete a 
sample according to whether its nearest neighbor has 
same class label with itself or not. Training with the 
reduction set, final classifier is obtained. Furthermore, 
we combine improved SVM with KNN to improve the 
performance of dependency analyzer. Experiments 
using the Kyoto University Corpus show that the 
presented method outperforms previous systems as 
well as improves the parsing and training efficiency. 
 
 
2   Cascaded Chunking Model Using 
SVM 
 
 
2.1 Support Vector Machine (SVM) 
Support Vector Machine (SVM) [5] is one of the 
binary linear classifiers introduced by Vipnik. 
Suppose l training examples )1(),,( liy ii ≤≤x  are 
given, where xi is a feature vector in n dimensional 
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feature space, yi is the class label {+1, -1} (positive or 
negative) of xi. SVM finds a hyperplane 0)( =+⋅ bxw  
which separate the training examples and has 
maximum margin between two hyperplane 

 and1)( ≥+⋅ bxw 1)( −≤+⋅ bxw . The optimal 
hyperplane with maximum margin can be found by 
solving the following quadratic programming 
problem. 
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     Where iα  is the Lagrange multiplier corresponding 
to each constraint. The Kernel function 

)()()( jiji xxxxK φφ ⋅=,  can reduce the computational 
overhead when the training example x is projected 
onto a high dimensional space by using projection 
function φ . Among the many kinds of Kernel 
functions, the d-th polynomial kernel: 

 is used. Where d is the 
dimension of the polynomial functions. 
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     Further more, the optimization problem can be 
written into the following maximum problem. 
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     Finally, the label of an unknown example is 
decided by the following function: 

∑
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SVM estimate the label of an unknown example   
whether sign of  is  positive(+1) or 
negative(-1). 

)( xf

 
 
2.2 Japanese dependency Analysis Model 
We define a sentence as a sequence of segments 

mbbbB ,...,, 21=  and its syntactic structures as a 

sequence of dependency patterns 
)1(),...,2(,)1( −= mdepdepdepD , where jidep =)(   

means that segment bi depends on (modifies) segment 
bj. In this frame-work, we suppose that the 
dependency sequence satisfies the following 
constrains. 
1. Except for the rightmost one, each segment depends 
on exactly one of the segments appearing to the right. 
2. Dependencies do not cross each other.  

In order to use SVM for dependency analysis, we 
adopt a sample method: We take a pair of segments 
that are in a dependency relation as a positive data, and 
a pair of segments that are not in a dependency relation 
as a negative data.  
   Japanese dependency analysis algorithm is as 
follows: 
1. Put an O tag on all segments since the dependency 
relation of each one is undecided. 
2. For each segment with an O tag, decide whether it 
modifies the segment on its immediate right hand side. 
If so, the O tag is replaced with a D tag. 
3. Delete all segments with a D tag that are 
immediately followed by a segment with an O tag. 
4. Terminate the algorithms if a single segment 
remains, otherwise return to step 2 and repeat. 
 

母は 私に いろいろな 物を 買ってくれました。

(Mother bought many thing for me . )
 

母は   私に いろいろな 物を 買ってくれました。 
Mother      me        many       thing       buy 
Initialization 
Input: 母は 私に いろいろな 物を 買ってくれました。 
Tag:     O          O              O            O             O 
------------------------------------------------------------------- 
Input: 母は 私に いろいろな 物を 買ってくれました。 
Tag:     O          O         D(Del.)            D            O 
------------------------------------------------------------------- 
Input: 母は 私に  物を 買ってくれました。 
Tag:    O      D(Del.)      D              O 
------------------------------------------------------------------- 
Input: 母は 物を 買ってくれました。 
Tag:    O       D(Del.)         O 
------------------------------------------------------------------- 
Input: 母は 買ってくれました。 
Tag:    D(Del.)  O 
------------------------------------------------------------------- 
Input: 買ってくれました。 
            O(Finish) 
Fig. 1. Example of the parsing process with cascaded 
chunking model 
 

Figure 1 shows an example of the parsing process 
and the result. In training, the model simulated the 
parsing algorithm by consulting the correct answer 
from the training annotated corpus. In testing, the 
model consults the trained system and parses the input 
sentence with the parsing algorithm.  

The simplest and most effective way to improve 
accuracy is to increase the training data. However, the 
increase of training data will bring a great amount of 
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training cost. And the support vectors of the trained 
model will increase. This will make the analysis time 
too long to apply the trained model actually.  

In the training data, there are many examples that 
are unused or not good to improve the classifier’s 
performance. If these examples can be deleted, the 
training cost will be decreased and the analysis 
accuracy as well as efficiency will be improved. 
 
 
3   Japanese Dependency Analysis 
Based on improved SVM 
Several attempts have been made to improve 
classification accuracy of SVM by prune the training 
set [6] [7]. We adopt the approach called Large 
training set SVM (LSVM). It prunes the large training 
set with the initial classifier according to the distance 
from a sample to the separate hyperplane. And then, 
we adopt the other approach called Nearest 
Neighbor-SVM (NN-SVM). It deletes a sample if its 
nearest neighbor has different class label with itself. In 
this paper, we use LSVM and NN-SVM (here after we 
call it NN-LSVM) to prune the training set. Then train 
with the reduction set to obtain final classifier. 
    To improve the performance of dependency 
analyzer further, we combine improved SVM with 
KNN. In the class phase, the algorithm computes the 
distance from the test sample to the optimal 
hyperplane of SVM in feature space. If the distance is 
greater than the given threshold, the test sample would 
be classified on SVM; otherwise, the KNN algorithm 
will be used. 
 
 
3.1 LSVM 
LSVM is a learning strategy of SVM used to large 
training set. When we use a large training set, in order 
to reduce the computation cost and do not affect the 
accuracy of the classifier, we prune the training data as 
follows: 
1. Abstract a small training set S from a large training 
set L. Train an initial classifier with the small training 
set S. The size of the small training set S is decided 
under the following condition:  

(1) The training cost is not big when training with it. 
  (2) The accuracy of the classifier is adequacy when 

training with it. 
2. Prune the large training set L with the initial 
classifier to obtain a small reduction set. Then training 
with the reduction set, finial classifier is obtained. The 
prune way is shown in figure 2.  

    The separate hyperplane of the initial classifier is 
H. The distance from a sample S to the separate 
hyperplane H is  . Remain the sample 
if

)0( ≥dd
εε +<<− 11 d  . Otherwise, delete it. We can 

control the size of the reduce set and the classifier 
accuracy by adjust the threshold )10( << εε  . In fact, 
the optimal classifier can be obtained by adjust the 
thresholdε . 

              1+ε       1-ε       1-ε       1+ε 

                      H+         H          H— 

the remain

area 

the remain

area 

 
Fig. 2. The pruning figure of the LSVM 

 
This prune strategy is designed along with that the 

classifier is related with the support vectors only and 
unrelated with the other samples. After pruning with 
this strategy, the remained samples are useful to 
classification and the deleted samples are useless or 
even reactive to classification. 
 
 
3.2 NN-SVM 
SVM focuses on the samples near the boundary in 
training time, and those samples intermixed in another 
class are usually no good to improve the performance 
of classier. On the contrary, they may greatly increase 
the cost of computation and their existence may lead to 
overlearning and decrease the generalization ability.      

NN-SVM is an improved SVM that can improve the 
generalization ability of classifier. It reserves or 
deletes a sample according to whether its nearest 
neighbor has same class label with itself or not, then 
trains the new set with SVM to obtain a classifier.  

We prune the training data as follows: 
Find the nearest neighbor of each sample. If a 

sample has the same class with its nearest neighbor 
reserve it, otherwise delete it.  

The distance between the two vectors 
)),,,(( 21 niiiii xxxxx L=   and   

is as: 
)),,,(( 21 njjjjj xxxxx L=
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3.3 SVM-KNN 
Analyzing the classification results, we find that the 
misclassified samples are mainly near the hyperplane. 
This means that we should use the information of the 
samples near the optimal hyperplane to improve the 
performance of the classifier. Based on SVM theory, 
the samples near the optimal hyperplane are mainly 
support vectors. In the meantime, the classifier based 
on SVM is regard as a 1NN classifier in which only 
one representative point is selected for each class. 
Therefore, A SVM-KNN classifier combined SVM 
with KNN is presented to improve the performance of 
SVM classifier [8]. The algorithm of SVM-KNN is 
described as follows: 
Suppose T is the testing set. 
(1) if T ≠ Φ , select x∈T , else stop; 
(2) compute the distance g(x) from the test sample to 
the hyperplane of SVM as described in (6); 
(3) if g(x) > ε , ε ∈[0,1], output f (x) = sgn(g(x)),  
else use KNN algorithms and output the returned 
results; 
(4) T ← T − {x}, go to step (1) 

The distance from the test sample to the hyperplane 
of SVM in feature space is as: 

                                           (6) ∑
∈

−=
svx

iii
i

bxxKyxg ),()( α

The distance from each test sample to each 
reference point is as: 

),(),(2),()()(),( iiiii xxKxxKxxKxxxxd +−=−= φφ   (7) 
Where ix  is the support vector.  

 
 
4   Experiments And Discussion 
 
 
4.1 Experiments Setting 
We use Kyoto University text corpus (Version 3.0) 
consisting of articles of Mainichi Newspaper. The 
sentences from the articles on January 1st, 3rd to 9th 
are used for the training data, and the sentences from 
the articles on January 10th are used for the test data. 
Our experiments are under the condition 3=d  
(dimension of the polynomial functions used for the 
Kernel function). 

The features used in the dependency parsing 
process are shown in Table 1. The features include 
static features and the dynamic features 

 
 

4.2 Experimental Results  
 
4.2.1   Based on improved SVM  
We train an initial classifier with the sentences from 
articles on January 1st. Then we prune the data on 
January 1st, 3rd to 9th with LSVM ( 9.0=ε , 
experiments show that the parsing accuracy is best 
when 9.0=ε ). We prune the training data continue 
with NN-SVM and obtained the final classifier. Test 
the data on January 10th based on SVM, LSVM and 
NN-LSVM. The experimental results are shown in 
table 2. 

Table 2 shows the dependency accuracy and the 
sentence accuracy are improved using large training 
data set based on SVM(86.86%→89.29%, 41.50%→
47.53%). The time required for training and parsing 
are significantly increased(4minutes → 908minutes, 
0.26sec./sentence→1.7sec./sentence). 

 
Table 1. Features used in the dependency parsing process 

left/right 
segments 

Head Word 
(surface-form, 
POS, 
POS-subcategory, 
inflection-type, 
inflection-form), 
Functional Word 
(surface-form, 
POS, 
POS-subcategory, 
inflection-type, 
inflection-form), 
brackets, 
quotation-marks, 
punctuation-marks, 
position in 
sentence 
(beginning, end) 

Static 
Features

Between two 
segments 

Distance 
(1,2-5,6-), 
case-particles, 
brackets, 
quotation-marks, 
punctuation-marks

The segments 
which modify the 
current candidate 
modifee or 
modifer 

Form of inflection 
represented with 
Functional 
Representation 

Dynamic 
Features

The segment 
which is modified 
by the current 
candidate modifee 

POS and 
POS-subcategory 
of Head word 
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We use LSVM and NN-LSVM to prune the training 
data. Even though the number of examples used for 
LSVM and NN-LSVM is less than that for SVM, 
dependency accuracy and sentence accuracy are 
improved(89.296% → 89.86%, 47.53% → 49.14%). 
And the time required for training and parsing are 
evidently reduced((908minutes → 129minutes, 
1.7sec./sentence→0.8sec./sentence).  

Experiments show that the improved SVM not only 
reduces the training cost greatly but also obtains a 
classifier that has better accuracy and efficiency than 
the classifier obtained by training large set directly. 

Training with LSVM increases the training cost of 
adjusting the threshold. However the increased cost is 
time cost instead of memory cost. This cost increases 
linearly. SVM requires O(n2) training cost, (where n is 
the number of examples.). It includes time cost and 
memory cost, and increases with the square of the 
number of examples. 
 

Table 2. Results based on NN-LSVM 
Model 
 
Training 
data (days) 

SVM 
 
 
1 

SVM 
 
 
8 

LSVM 
 
 
8 

NN- 
LSVM
 
8 

Dependency 
Acc. (%) 

86.86 89.29 89.35 89.86 

Sentence 
Acc. (%) 

41.50 47.53 47.58 49.14 

Parsing 
Time (sec./ 
sentence) 

0.26 1.7 1.5 0.8 

The number 
of support 
vectors 

5485 35181 32306 17165 

The number 
of examples 

15052 132022 104380 97727 

Training 
Time 
(minutes) 

4 908 643 129 

 
4.2.2   Combined improved SVM with KNN  

Table 3 shows that the approach combined improve 
SVM and KNN achieved higher dependency accuracy 
and sentence accuracy than the improved SVM when k 
is between 27 and 33 in the confidence ε =0.1. 
However, the approach combined improved SVM and 
KNN cannot performance better than the improved 
SVM when 2.0≥ε . This means that the misclassified 
samples are mainly near the hyperplane. 

 
 

Table 3. Results based on improved SVM and KNN 
 Dep. 

Acc. (%)
(ε =0.1) 

Sen. 
Acc. (%) 
(ε =0.1) 

Dep. 
Acc. (%) 
(ε =0.2) 

Sen. 
Acc. (%)
(ε =0.2)

K=1 89.75 48.29 89.69 48.02 
K=5 89.70 48.35 89.68 48.15 
K=10 89.75 48.96 89.65 48.96 
K=20 89.78 48.22 89.41 47.41 
K=25 89.91 48.82 89.72 48.49 
K=26 89.98 49.09 89.81 48.62 
K=27 90.02 49.23 89.84 48.69 
K=28 90.01 49.16 89.84 48.96 
K=29 90.00 49.16 89.84 48.76 
K=33 90.00 49.16 89.84 48.76 

 
 
4.3 Comparison with Related Work 
The results of our model and the recent Japanese 
Dependency Analysis model (cascaded chunking [3], 
ME [1], ME + posterior context [2]) are summarized 
in table 4. Dependency accuracy and sentence 
accuracy are improved using improved SVM and 
KNN. The time required for training and parsing 
cannot be compared since the computers used for each 
experiment are different. 
 

Table 4. Comparison with the related work 
Model Training 

Corpus 
(# of 
days) 

Dependency 
Acc. (%) 

Sentenc
e Acc. 
(%) 

Improved SVM 
and KNN 

Kyoto 
Univ. (8) 

90.02 49.23 

Improved SVM Kyoto 
Univ. (8) 

89.86 49.14 

Cascaded 
chunking[4] 

Kyoto 
Univ. (8) 

89.29 47.53 

Probabilistic 
(ME)[1] 

Kyoto 
Univ. (8) 

87.14 40.60 

Probabilistic 
 (ME + posterior 
context)[2] 

Kyoto 
Univ. (8) 

87.93 43.58 

 
 

6   Conclusion 
This paper presented a method for Japanese 
dependency analysis that using improved SVM and 
KNN. The improved SVM delete those samples that 
are unused or not good to improve the classifier’s 
performance, and then trained with the reduction set to 
obtain the final classifier. Experiments show that the 
improved SVM not only reduces the training cost 
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greatly but also obtains a Japanese analyzer that 
outperforms the analyzer obtained by training large set 
directly with respect to accuracy and efficiency. 
Furthermore, we combined improved SVM and KNN. 
The experimental results show that that the mixed 
algorithm can improve the dependency accuracy 
compared to improved SVM. 
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