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Abstract:Robust Kalman filtering problems for discrete-time Markovian jump systems with parameter and noise
uncertainty were investigated. Because of the existence of stochastic Markovian switching, the covariance matrices
of system state noise and observation noise are time-varying or unmeasurable instead of stationary, meanwhile the
system suffers from structure parameter uncertainty as well. By view of robust estimation, maximum admissible
upper bound of the disturbance to noise covariance matrix was given based on the estimation performance, and
an optimal state estimator was therefore adopted under the worst situation. Not only can this method minimize
the worst performance function of uncertainty, but also the estimation error performance can be guaranteed to be
within the given precision. A numerical example shows the validity of the method.
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1 Introduction
Optimal filtering problem has been a hot topic in

past decades, among which Kalman filtering is one of
the most popular estimation approaches and consider-
able effort has been devoted to its theory and appli-
cations. The applications of Kalman filtering theory
may be found in a large spectrum of different fields
ranging from various engineering problems to biol-
ogy, geoscience, economics, and management etc[1].

On the other hard, Markovian jump systems,
which are convenient tools for representing many real-
world systems[2]have aroused much attention in re-
cent years. And fruitful achievements have been made
in the last three decades on stability analysis[3, 4],
filtering[5, 6]and control design[7, 8]. In the efforts
towards filtering, Boukas[9]and Mahmoud [10]gave
Kalman filtering equations for continuous-time and
discrete-time Markovian jump linear systems with
structure uncertainty respectively. However, in above
referred contributions, all the research work was car-
ried out based on one assumption: both the state equa-
tion and output measurement are subjected to STA-
TIONARY Gaussian noises so that an optimal filter-
ing gain is obtained based on the stationary noise co-
variance matrix. But this is not the case for Marko-
vian jump systems. In practical environment, because
of the stochastic switching in Markovian jump sys-
tems,which is usually accompanied by sudden change
of working environment, the statistical characteris-
tics(covariance matrix) of noise may be time-varying

instead of stationary, and in some cases it is impossi-
ble to get the exact value of noise covariance matrix,in
such cases the noise is so-called ”uncertain”. Thus the
pre-designed filter may fail resulting from the change
of noise covariance matrix and the controller using the
estimation of system state will be incorrect. Thus the
noise uncertainty will in worst case lead to system in-
stability and a practical problem occurs: Could the
pre-designed Kalman filter still efficient with the pre-
sentence of uncertain noise and parameter? How to
achieve this?

In this paper, robust Kalman filtering for discrete-
time Markovian jump systems under uncertain noise
and parameter is considered. Firstly we give some
assumptions to obtain estimation performance. Sec-
ondly we seek the maximum admissible upper bound
of non-structure disturbance to noise such that the
deviation of estimation performance can be within
a prescribed precision. Then we discuss about the
sub-optimal analytical solution by usingLagrange
method. Finally we prove the establishment of saddle
inequality and show that our filter design is a mini-
max robust filter. At the end of the paper, an illus-
trative example is used to show the validity of our
method.

2 Problem Description
Throughout the paper,unless otherwise specified,we
denote by(Ω,F , {Ft}t≥0, P ), a complete probabil-
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ity space with a filtration{Ft}t≥0 satisfying the usual
conditions(i.e. it is right continuous andF0 contains
all p-null sets). Let|x| stand for the usual Euclidean
norm for a vectorx , and |X| denote the Frobenius

norm of a matrixX defined by|X| = λ
1
2
max(XXT ),

whereTr(·) denotes the matrix trace and the super-
script T denotes transpose.MatrixX > 0(≥ 0) de-
notesX is positive definite(semi-positive definite).
Let {rk, k ≥ 0} is a discrete Markov chain on the
probability space taking values in finite state space
S = {1, 2, . . . , N} with P = [pij ] the chain gener-
ator,anN × N matrix.The entriespij , i, j ∈ S are
interpreted as transition rates such that

pij = Pr(rk+1 = j|rk = i)

Herepij ≥ 0 is the transition probability from i to j .
Notice that the total probability axiom imposes

N∑

j=1

pij = 1, pij ≥ 0 ∀i ∈ S

Consider the following discrete-time Markovian
jump system with uncertain noise and parameter:

xk+1 = [A(rk) + ∆A(rk)]xk + ω0

yk = [C(rk) + ∆C(rk)]xk + υ0 (1)

wherexk ∈ Rn is state vector,yk ∈ Rm is mea-
surement output. A(·) ∈ Rn×n, C(·) ∈ Rn×m

are known matrices.ω0, υ0 aren−dimensional and
m−dimensional white noise and satisfy the following
assumption:
Assumption 1. For any given times, τ ≥ 0, there
is

(1) E[ω0
τ ] = 0 E[υ0

τ ] = 0
(2) Cov[ω0

s , ω
0
τ ] = W 0δs,τ = (W + ∆W )δs,τ ,

W ≥ 0,∆W ≥ 0
(3) Cov[υ0

s , υ
0
τ ] = V 0δs,τ = (V + ∆V )δs,τ ,

V > 0,∆V ≥ 0

(4) E[(
w0

s

υ0
s

) · (w0T
τ υ0T

τ )] =

[
W 0δτ,s 0

0 V 0δs,τ

]

In Assumption 1,W 0 ∈ Rn×n, V 0 ∈ Rm×mconsist
of two parts,whereW,V denote the stationary noise
covariance matrix and the values are exactly known.
∆W,∆V denote the uncertainty caused by distur-
bance or time-varying,they are unknown but bounded.
δ(·, ·) is aDirac function taking values in{0, 1}.

For the deduction of Kalman filter,we introduce
the following assumption([10]):
Assumption 2 . For any fixed system moderk =

i ∈ S, parameter(structure)uncertainty∆A(i),∆C(i)
satisfy

∆A(i) = H1(i)F (i)E(i)
∆C(i) = H2(i)F (i)E(i) (2)

whereH1(i),H2(i), E(i), i ∈ S are known constant
matrix andF (i), i ∈ S is unknown matrix satisfy-
ing F T (i)F (i) ≤ I. For simplification, we denote
A(rk = i), C(rk = i), H1(rk = i), H2(rk = i),
E(rk = i), ∆A(rk = i), ∆C(rk = i) by Ai,Ci,
H1i,H2i, Ei, ∆Ai, ∆Ci.

Theorem 1 Consider stochastically stable Marko-
vian jump system (1)and assume the noise is station-
ary, which means∆W = ∆V = 0, we have the fol-
lowing extended Kalman filter([10]):

˙̂x = Âix̂ + Ki[y − Ĉix̂] (3)

where matrixQi,Ki are given by the following cou-
pled Riccati equations:

Âi = Ai + (
1
εi

H1iH
T
1i + W )Ψ−1

i

Ĉi = Ci +
1
εi

H2iH1iΨ−1
i

Ψi = Ai(
N∑

j=1

pijΨj)AT
i + εiΨiE

T
i EiΨi

+
1
εi

H1iH
T
1i + W

Ki = (ÂiQ̄iĈ
T
i +

1
εi

H1iH
T
2i)(

1
εi

H2iH
T
2i + V )−1

Qi = (Âi −KiĈi)Q̄i(Âi −KiĈi)T

+KiV KT
i + W

Q̄i =
N∑

j=1

pijQj (4)

Here parameterεi is chosen such thattr(Qi) reaches
the minimum. With the above standard Kalman filter
gain (3) adopted, the state estimation error satisfies:

E{(x− x̂)(x− x̂T )} ≤ max
j∈S

tr(Qj) (5)

Define the estimation error performance as

J(K1,K2, . . . , KN ,W, V ) = max
j∈S

tr(Qj) (6)

According to Theorem 1 and quality of Kalman filter-
ing, if the noise is stationary(∆W = ∆V = 0),the
estimation error performance could achieve the mini-
mum value by adopting standard Kalman filtering (3).
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However in practical world, the standard Kalman fil-
ter may fail with uncertain noise :∆W 6= 0,∆V 6= 0,
thus the new covariance matrix of noise isW 0, V 0. If
we still adopt the former pre-designed Kalman filter
gainKi,the new state estimation error should beQ0

i ,
which satisfies:

Q0
i = (Âi −KiĈi)Q̄0

i (Âi −KiĈi)T

+KiV
0KT

i + W 0 (7)

Therefore the new estimation performance is

J(K1,K2, . . . , KN ,W 0, V 0) = max
j∈S

tr(Q0
j ) (8)

According to (6) and (8), the deviation of estimation
performance yielded by noise uncertainty(∆W,∆V )
can be written as:

∆J(K1,K2, . . . , KN ,∆W,∆V )
= J(K1, . . . , KN ,W 0, V 0)− J(K1, . . . , KN ,W, V )
= max

j∈S
tr(Q0

j )−max
j∈S

tr(Qj) ≤ r (9)

Thus our purpose is: if we want the pre-designed
Kalman filter still efficient under uncertain noise
(∆W,∆V ), we should limit noise uncertainty to a
certain bound. As long as the(∆W,∆V ) is within
this bound, the admissible deviation of estimation
performance∆J(K1,K2, . . . , KN ,∆W,∆V ) ≤ r
wherer > 0 is a design parameter according to prac-
tical requirement. In the following work, we set out to
find corresponding equation between(∆W,∆V ) and
r.

3 Upper bound of nonstructural dis-
turbance

3.1 Expression of upper bound

According to (4), (7), we have

∆Q0
i = (Âi −KiĈi)∆Q̄0

i (Âi −KiĈi)T

+Ki∆V KT
i + ∆W (10)

where∆Qi = Q0
i − Qi, from (10), it is easy to see

thattr(∆Qi) is a linear mapping of(∆W,∆V ).
Define a compact convex set asΞ = {(∆W,∆V ) :
0 ≤ ∆W ≤ ∆W ∗, 0 ≤ ∆V ≤ ∆V ∗}, thus
∆J(K1,K2, . . . , KN ,∆W,∆V ) is a mapping from
Ξ to R1, and it has following facts:
Fact 1. For any given(∆Wj ,∆Vj) ∈ Ξ, j = 1, 2,
if ∆W1 ≤ ∆W2,∆V1 ≤ ∆V2, we have

∆J(K1,K2, . . . , KN ,∆W1,∆V1)
≤ ∆J(K1,K2, . . . , KN ,∆W2,∆V2)

Fact 2. Define the maximum admissible deviation
of estimation performancer as

r = max
(∆W,∆V )∈Ξ

∆J(K1,K2, . . . , KN ,∆W,∆V )

Thusr could be achieved only by maximum matrix
pair (∆W ∗,∆V ∗).

The purpose of following work is to construct a
maximal conpact convex setΞ∗, for any(∆W,∆V ) ∈
Ξ∗,(9) is sure to establish, and a mini-max robust fil-
tering is applied to minimize the worst performance
under the noise uncertainty.

According to the finity of modeS, (9) is equiva-
lent to

tr(Q0
i ) ≤ r + max

j∈S
tr(Qj) (11)

Therefore for each modei ∈ S,there is

tr(∆Qi) = tr(Q0
i )− tr(Qi)

≤ r + max
j∈S

tr(Qj)− tr(Qi) (12)

Let |∆W | ≤ a, |∆V | ≤ b, thus we have

0 ≤ ∆W ≤ aIn 0 ≤ ∆V ≤ bIm

According to Fact.2 , if the noise disturbance
reaches the maximumaIn, bIm, the deviation of es-
timation performance will reach the maximum value
r.
According to (10) and (12), we have∀i ∈ S

atr(Di) + btr(Gi) ≤ r + max
j∈S

tr(Qj)− tr(Qi) (13)

where matrixDi, Gi > 0, i ∈ S satisfy the following
equations:

Di = (Âi −KiĈi)D̄i(Âi −KiĈi)T + In

Gi = (Âi −KiĈi)Ḡi(Âi −KiĈi)T + KiK
T
i

D̄i =
N∑

j=1

pijDj

Ḡi =
N∑

j=1

pijGj

By above analysis, the seeking of admissible maxi-
mum bound of(∆W,∆V ) is equal to get the optimal
solution ofa, b such that satisfying the inequalities:

max a · b
s.t. a · tr(Di) + b · tr(Gi) ≤ r + max

j∈S
tr(Qj)− tr(Qi)

a ≥ 0 b ≥ 0 i ∈ S (14)

Thus the the seeking of admissible maximum bound
of (∆W,∆V ) is transformed to be a nonlinear
programming problem with linear inequalities con-
straints. Now we discuss about the solution of this
problem.
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3.2 Analytical solution

SinceΞ = {(∆W,∆V )} is a compact convex set and
the inequalities in (14) compose a compact closed set
on whicha ·b is defined as a continuous function.Thus
there must exist the optimal solution ofa, b. Decom-
pose the original nonlinear program problem Eq. (14)
into N sub-problems:

max a1 · b1

s.t. a1 · tr(D1) + b1 · tr(G1)
≤ r + max

j∈S
tr(Qj)− tr(Q1)

max a2 · b2

s.t. a2 · tr(D2) + b2 · tr(G2)
≤ r + max

j∈S
tr(Qj)− tr(Q2)

...

max aN · bN

s.t. aN · tr(DN ) + bN · tr(GN )
≤ r + max

j∈S
tr(Qj)− tr(QN )

By usingLagrange method, we have the optimal an-
alytical solution for each sub-problem as:

a∗i =
r + maxj∈S tr(Qj)− tr(Qi)

2tr(Di)

b∗i =
r + maxj∈S tr(Qj)− tr(Qi)

2tr(Gi)
(15)

Thus the analytical solution for the original nonlinear
program problem Eq.(14) is taken as

a∗ = min
i∈S

a∗i = min
i∈S

{r + maxj∈S tr(Qj)− tr(Qi)
2tr(Di)

}

b∗ = min
i∈S

b∗i = min
i∈S

{r + maxj∈S tr(Qj)− tr(Qi)
2tr(Gi)

}
(16)

Remark : The analytical solution of the nonlinear
programming problem is given by above analysis,
however, it is only an optimal solution for each sub-
problem. This analytical solution in Eq.(16) is local
optimal but global sub-optimal. For the global optimal
solution, we could only get the numerical solution by
using ”fmincon” function in Matlab software.The op-
timal analytical solution of such nonlinear program-
ming problem is still an open problem in mathematics
for further exploration.

Theorem 2 Consider Markovian jump system (1),if
we adopt state estimator (3) and Kalman filter gain

(4), there exist a maximum admissible compact set
Ξ. When the disturbance of noise covariance matrix
(∆W,∆V ) ∈ Ξ, the deviation of system state estima-
tion performance is within a given boundr.

4 Mini-max robust filter

Let K∗
1 ,K∗

2 , . . . , K∗
N denotes the standard extended

Kalman filtering gain corresponding to the maximum
admissible noise disturbance(∆W ∗,∆V ∗), accord-
ing to the quality of Kalman filtering, we have

∆J(K∗
1 ,K∗

2 , . . . , K∗
N ,∆W ∗,∆V ∗)

≤ ∆J(K1,K2, . . . , KN ,∆W ∗,∆V ∗)

On the other hand, according toFact 1 , we have

∆J(K∗
1 ,K∗

2 , . . . , K∗
N ,∆W,∆V )

≤ ∆J(K∗
1 ,K∗

2 , . . . , K∗
N ,∆W ∗,∆V ∗)

Thus we have the following saddle point inequality:

∆J(K∗
1 ,K∗

2 , . . . , K∗
N ,∆W,∆V )

≤ ∆J(K∗
1 ,K∗

2 , . . . , K∗
N ,∆W ∗,∆V ∗)

≤ ∆J(K1,K2, . . . , KN ,∆W ∗,∆V ∗)

By Game theory, the optimal estimator under the
worst situation is the mini-max estimator:

min
Ki

max
(∆W,∆V )∈Ξ

∆J(K1,K2, . . . , KN ,∆W,∆V )

= max
(∆W,∆V )∈Ξ

min
Ki

∆J(K1,K2, . . . , KN ,∆W,∆V )

5 Simulation

Consider the following two-mode discrete-time
Markovian jump system:
Let the system moderk = 1 be given by

A1 =

[
0.7 0
0 1.1

]
C1 =

[
1.5 0

]

H1(1) = [0.1 0.1]T H2(1) = 0.1 E1 = [0.3 0.2]

Let the system mode 2 be given by

A2 =

[
0.9 0
0 1

]
C2 =

[
1 0

]

H1(2) = [0.15 0.15]T H2(2) = 0.1 E2 = [0.2 0.2]

Stationary noise covariance matrix and mode transi-
tion matrix is

W =

[
1 0
0 1

]
,V = 1, P =

[
0.5 0.5
0.7 0.3

]
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The admissible bound of performance deviation is
r = 0.3
1)Solve the equation (4),getQ1, Q2 andK1,K2:

Q1 =

[
2.4188 1.2012
1.2012 2.7563

]
, K1 =

[
0.6590
1.0087

]

Q2 =

[
2.6753 1.2531
1.2531 2.8966

]
, K2 =

[
0.6754
0.5096

]

2)Substitute the result to (14), by usingLagrange
method, the upper bound of noise uncertainty are
given as:a∗ = 0.1493, b∗ = 0.1677
3)Let the noise covariance matrix correspond to the
maximum perturbation:
W ∗ = W + ∆W = W + a∗ · I2,
V ∗ = V + ∆V = V + b∗ · I1

4)Repeat step 2), and we have the correspondent
Q∗

1, Q
∗
2,K∗

1 ,K∗
2 for new noise covariance matrix

(W ∗, V ∗):

Q∗
1 =

[
2.4351 1.2235
1.2235 2.7898

]
, K∗

1 =

[
0.6903
1.1458

]

Q∗
2 =

[
2.7858 1.2658
1.2658 3.0177

]
, K∗

2 =

[
0.7012
0.5241

]

5)With the robust Kalman filtering applying:
∆J(K∗

1 ,K∗
2 ,∆W ∗,∆V ∗) = 0.2316 < 0.3

6 Conclusion

In this paper, the robust Kalman filter for discrete-
time Markovian jump system with uncertain noise and
parameter is considered. A new method is given to
obtain the maximum admissible bound of the distur-
bance to noise so that the deviation of estimation per-
formance is guaranteed to be within a given preci-
sion. The seeking of bound to noise uncertainty could
be transformed to a nonlinear programming problem,
and the analytical solution of this problem is also dis-
cussed in this paper, which is a sub-optimal and con-
servative solution viaLagrange method. The simu-
lation show the validity of this design method.
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