
Design and Implementation of a DVB-H IP Decapsulator

WEN-TZENG HUANG
1
, SUN-YEN TAN

1
, CHIN-HSING CHEN

2
, REN-GUEY LEE

1

1
 Department of Electronic Engineering

National Taipei University of Technology

Taipei, Taiwan, R.O.C.

 {sytan, wthuang, evans}@ntut.edu.tw

http://www.ntut.edu.tw/~wthuang

2
 Department of Management Information Systems

Central Taiwan University of Science and Technology

Taichung, Taiwan, R.O.C.

chchen@ctust.edu.tw

Abstract: - The digital video broadcasting-handheld (DVB-H) standard determined by the European

Telecommunications Standard Institute is based on the terrestrial broadcast system DVB-Terrestrial (DVB-T),

which has allowed digital video to be incorporated into handheld device applications. DVB-H also makes coded

orthogonal frequency division multiplexing, time slicing, and multi-protocol encapsulation-forward error

correction (MPE-FEC) compatible with the existing broadcasting standard. We describe a DVB-H Internet

Protocol (IP) decapsulator that can achieve time slicing and MPE, as well as cross platform compatibility, and is

highly adaptable. Power consumption is always an issue in handheld devices, and time slicing effectively

reduces the most serious DVB-H demodulator power consumption problems. The DVB-H protocol uses MPE to

deliver information, and unlike other DVB protocols, the video and sound data of DVB-H are not packed

directly into the MPEG-2 transport stream. Instead, they are packed into the IP datagram, MPE is performed,

and then the data are delivered via the MPEG-2 transport stream. In this way, DVB-H is backward-compatible

with DVB-T. We implemented the DVB-H IP decapsulator using pure Java language, which enables it to

function across platforms. We specified a platform-adaptive layer to reduce the drive complexity between the

Java virtual machine and the demodulator. Because DVB-H has a built-in IP decapsulator transport stream

dispatcher module, it independently creates program-specific information and service information subdecoders.

Therefore, the packet that recognizes the decoders can be obtained from the transport stream dispatcher while

the registration of that specific packet is completed.

Key-Words: - IP-Decapsulator, DVB-H, Time-slicing, Multi-Protocol Encapsulation

1 Introduction
The digital video broadcasting-handheld (DVB-H)

system standard [1] is based on a terrestrial broadcast

system called DVB-terrestrial (DVB-T) [2], but

applying DVB-T systems to handheld receivers may

lead to problems with mobile receiving ability and

power consumption. DVB-H has additional features,

such as transmission parameter signaling (TPS), 4K

mode and in-depth symbol interleaves, a

multi-protocol encapsulation-forward error

correction (MPE-FEC) encoding mechanism,

time-slicing techniques, and a soft-handover

mechanism, which improve mobile reception and

reduce power consumption. These features allow

handheld terminals to receive television signals.

 A DVB-H standard is still being established, and

most DVB research has focused on the design of a

whole system [3][8] and on performance evaluation

[4][9]. Fig. 1 shows a conceptual link-layer block

diagram [3] of a DVB-H system. The main tasks of

the link layer are Internet Protocol (IP) decapsulation

and error correction. At the receiving end within the

link layer, a demultiplexer (demux) analyzes the

transport stream, and then sends IP datagrams to the

back end, allowing application programs to broadcast

audio and video streams. To reduce power

consumption, the streams at the receiving end also

contain the power control information of the physical

layer, which can be analyzed via the link layer and

sent to the power control module. Gerard evaluated

the implementation and power consumption

performance of a DVB-H system [4], but because

DVB-H is a new research area, few hardware

implementations are available. This paper presents a

software design method for an IP decapsulator.

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 219

Fig. 1. Conceptual link-layer block diagram [3].

The goal of our study was to design and implement

a DVB-H IP decapsulator using pure Java language

to enable functionality across platforms. We used a

platform-adaptive layer to reduce the driving

complexity between a Java virtual machine and the

demodulator. Because DVB-H has a built-in IP

decapsulator transport stream dispatcher module, it

independently creates program-specific information

and service information subdecoders. Therefore, the

packet that recognizes the decoders can be obtained

from the transport stream dispatcher while the

registration of that specific packet is completed. The

above mechanism allows the new decoding module

to be expanded with existing resources when more

information tables are added in the future.

 A television broadcast may contain video, audio,

and text tracks. Multimedia streams are also

multiplexed streams. As the data are received, the

multiplexed streams must be demultiplexed into

video and audio. For transmission, DVB-H

encapsulates IP datagrams into transport streams, and

then demultiplexes the streams into IP datagrams that

can be received. Fig. 2 shows an IP service transport

system structure. A DVB-H IP encapsulator is used

to pack the DVB-H service into an IP datagram,

followed by MPE and time slicing. Then, a DVB-H

IP decapsulator is used to recover information at the

receiving end.

Fig. 2. DVB-H IP transport system structure.

Time slicing reduces both the average energy

consumption of handheld terminals and

communications between base stations. Fig. 3 shows

a burst transmission.

Service 2

Service 1

Service 3

Service 4

Other DTV Services (eg. MPEG2 packets)

Bit rate

Time

S
e
rv

ic
e
 1

S
e
rv

ic
e
 2

S
e
rv

ic
e
 3

S
e
rv

ic
e
 4

S
e
rv

ic
e
 1

S
e
rv

ic
e
 2

S
e
rv

ic
e
 3

S
e
rv

ic
e
 4

S
e
rv

ic
e
 1

S
e
rv

ic
e
 2

S
e
rv

ic
e
 3

S
e
rv

ic
e
 4

S
e
rv

ic
e
 1

S
e
rv

ic
e
 2

S
e
rv

ic
e
 3

S
e
rv

ic
e
 4

S
e
rv

ic
e
 1

S
e
rv

ic
e
 2

S
e
rv

ic
e
 3

S
e
rv

ic
e
 4

Bit rate

Time

DVB-T

Services

Time-slicing

sevices

Active

Inactive

Receive

r

Burst
Time

Off -
Time

Delta-T

Fig. 3. Burst transmission.

As shown in Fig. 4, a time tag (Delta-T) within

the current burst indicates the arrival time of the next

receiving burst. No transmission takes place between

the two bursts. By sharing bandwidth, the burst is

able to deliver the streams of various services.

Time-slicing techniques also allow the receiving end

to monitor the signals of nearby base stations, leading

to a soft handover. Jitter in the Delta-T indicates the

time necessary to turn on the demodulator in advance

at the receiving end. The maximum burst duration is

the maximum burst in terms of time. Using these

three time parameters, the IP datagram streams can

be received correctly via time slicing.

Fig. 4. Burst time parameters.

 Section 2 describes the DVB-H IP decapsulator

and its implementation. Section 3 presents the

experimental results. Section 4 presents the hardware

testing environment and the test results, and Section 5

provides our conclusions.

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 220

2 DVB-H IP Decapsulator
Fig. 5 shows the software structure of a DVB-H IP

decapsulator. The decapsulator consists of the input

interface of the platform adaptive layer, the output

interface of the platform adaptive layer, the transport

stream dispatcher, subdecoders, and the controller.

Fig. 5. Soft structure of a DVB-H IP decapsulator.

 The DVB IP decapsulator is not directly connected

to the front demodulator interface, and is only needed

to implement the platform adaptive layer. This allows

communication between various stream source

interfaces.

Table 1. Algorithm for the transport stream dispatcher.

 A platform adaptive layer at the video output end

connects the DVB-H IP decapsulator and available

player programs. The output-end interface is easily

achieved using network sockets, files, and pipelines

in the platform adaptive layer, increasing the output

options.

2.1 Transport stream dispatcher
Various streams of information, including video, the

program specific information (PSI)/service

information (SI) control table, and the MPE packet,

are delivered within the DVB-H transport stream.

The transport stream dispatcher then delivers the

packets to various process modules depending on

their type. It can also filter programs specified by the

user from the packets before passing them to the

DVB-H terminal device. The dispatcher reads the

packets from the source end and then identifies the

header of the transport packet. The preprocessing

operations shown in Table 1 will be executed based

on the header information.

 During burst transport, the stream may contain

multiple filled packets. By identifying these filled

packets during reception, the transport stream

dispatcher can reduce processing time. That is, the

filled packets are discarded rather than being sent to

the subdecoder to consume processing time. To

simplify the subdecoder, the transport stream

dispatcher provides a dispatching table to register the

decoded packet types. The dispatching table is a type

of hashing table application in which time is a

constant regardless of the number of registrations.

Therefore, the dispatching table can support new

tables or the private tables of television stations.

Table 2. Algorithm of the subdecoder.
Function: DecodeFunction(Packet)

// get the first packet inside the section from transport

// stream dispatcher and decode it.

Set Payload = PayloadOfThePacket;

Set PayloadLength = PacketPayloadLength;

if sectionLength equal PayloadLength then {

DecodeHeader();

if Payload not equal NULL then

 OutputToDVB-HChannel (Payload);

}

else

{

Set ReceiveLength equal PayloadLength;

Set ContinuityPacketPointer(This);

}

Function: ContinueFunction(Packet)

// get the subsequent sections from the transport stream

// dispatcher.

Set Payload = Payload + PacketPayload;

Set PayloadLength = PayloadLength + RcvLength;

if ReceiveLength equal section_length then

{

DecodeHeader();

Set ContinuityPacketPointer = NULL;

}

If SystemStart then

{

Set Packet = ReadPacketFromInput(Buffer);

if PID equal 8191 then

continue;
if PayloadUnitStartIndicator equal 1 then {

if ContinueSection not equal NULL then

call ContinuityDecodeFunction(Packet);

continue;

Set Decoder = FindDecoder (TID<<16&PID);

if Decoder equal NULL then

call UnknownPacket ();

else

call DecodeFunction(Packet);

}

else

{

if ContinuityPacket not equal NULL then

call ContinuityDecodeFunction (Packet);

else
OutputToDVB-Tchannel (Packet);

}

}

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 221

2.2 Subdecoder elements
During initialization, the subdecoder registers the

packet type with the transport stream dispatcher to

obtain the corresponding packets. The transport

stream dispatcher reduces the items implemented by

the subdecoder, which may include initialization,

decoding, and packet loss. A common subdecoder

algorithm is shown in Table 2. Depending on the

registered information, the dispatcher delivers the

packets that are registered to each corresponding

packet type. Based on the information in the packet,

the subdecoder releases configurations or messages

to the controller objects. Delivered messages contain

notices that include process records, debugging

messages, and error message reports.

 Based on the length field of the session, the

subdecoder can determine when a message exceeds

the carrying capacity of a packet; in this case, it sets

the continuity packet pointer object to itself. After

receiving a packet, the transport stream dispatcher

checks whether the continuity packet pointer object is

null, and if so, the subdecoder handling the received

packet is found in the dispatching table. Otherwise,

the packet is delivered to the continuity receiving

subdecoder, and the operations are repeated until the

receiving session is complete. Then the subdecoder

resets the continuity packet pointer object to null, and

the procedure is followed to find the corresponding

subdecoder of the packet.

2.3 The controller objects
The control information entered by the user is

received using the controller interface. This differs

from the conventional method in which the control

interface is embedded in the player, and separates the

DVB-H IP decapsulator and the player device. The

main functions of the controller objects involve

decapsulator timing control, the user control input

interface, and the message output interface.

Depending on the control requests entered by the user,

the controller releases control messages to various

control modules; the requests include playing, tuning,

and termination. Each module is adjusted by the

released messages to meet the requested operations

of the user, and the control object is an interactive

interface between the DVB-H IP decapsulator and

the user. In a handheld device, a graph interface can

be used to show the information, and the keyboard to

receive messages from the user. In addition to

catching user input, the controller serves as the

message output interface. The controller is only

interactive with the subdecoder, although it is

connected to all of the elements within the DVB-H IP

decapsulator to receive output messages.

2.4 Time slice mechanism
During the processing of the data-linking layer, it is

necessary to transfer the Delta-T and maximum burst

duration parameters to the physical layer in real time.

As shown in Fig. 6, setting buffers can reduce the

real-time tasks at the receiver end. However, the

Delta-T parameter must be handled in real time.

Delta-T information is contained within each MPE

section, but when the MPE section is buffered, the

Delta-T information may expire if the time required

to fetch the MPE section from the buffers exceeds the

time allowed by the Delta-T jitter. Therefore, the

Delta-T information becomes useless.

Delta-T

Section A :

Section B :

Process Time Section C :

Section D :

Section E :

Delta-T Jitter

Section A

Section B

Section C

Section D

Section E

Time

Valid Delta-T region

Burst 1 Burst 2

MPE Section

Delta-T pointer after process

Time

Fig. 6. Handling the delay time for a packet.

 The first MPE section has the shortest delay. When

all of the MPE sections within the previous burst are

processed completely, the sections within the next

burst are transferred into the buffers via the physical

layer and are directly accessed by the DVB-H IP

decapsulator. The Delta-T information that must be

fetched from the first MPE section is within the burst.

The arrival time of the next burst to the physical layer

is necessary for the start time of the burst to be set;

the Delta-T information within the remaining MPE

section does not need to be read.

 To finish decoding the DVB-H information, all of

the MPE sections within the buffer must be processed

before the next burst arrives. Then the first MPE

section can be received in real time at its starting

point.

3 Experimental Results
We used a WAFER-9371A industrial computer

manufactured by IEI Technology Corporation as the

basic working platform to simulate a personal digital

assistant (PDA) handheld application device. The

transport stream supported by the broadcasting

project of public television and the original IP stream

were used to verify accuracy. Table 3 shows the

information captured from the public television

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 222

image source. We achieved a 79.7% savings in power

consumption. A different number of MPE sections

was delivered inside each burst, that is, between 99

and 486 packets (for the test case only).

Table 3. Public television video parameters.

Parameters Values

Size of file 755,605,652 (bytes)

Packet number
4,019,179 (pieces)

(188 bytes/each packet)

Burst number 552 (times)

MPE section number 21569 (pieces)

Delta-T 1250 ms

Delta-T jitter 7.5 ms

Max. burst continuous

time
200 ms

Power saving rate 79.7%

Video resolution 176*120 (QCIF)

Max. average bit rate 512 kbps

Frame refresh rate 15 fps

 The main tasks of the transport stream dispatcher

module are decoding the transport stream packet,

filtering filled packets, and finding the corresponding

subdecoders for the packets using the hashing table

operation. The hashing table operation is executed

quickly, with an average executing time of 884 ns.

Use PAL compare with non PAL time

23.3

55.8

0

10

20

30

40

50

60

Reading a packetns

Non PAL
Use PAL

Fig. 7. Packet reading time with and without the

platform adaptive layer.

Fig. 7 indicates that the time difference between

reading a packet with the platform adaptive layer and

obtaining a packet directly from the virtual machine

was only 32.5 ns, which is negligible compared to the

total processing time. The hardware input/output

time is usually greater.

Setup Delta-T time Compare with Delta-T time

1.666

7500

1

10

100

1000

10000

Delta-T Jitterus

Setup Delta-T time
Delta-T Jitter time

Fig. 8. Delta-T executing time setup.

 Fig. 8 shows the required time for establishing

Delta-T. The hashing table operation of the transport

stream dispatcher required the most time. Therefore,

the total time was slightly greater than the transport

stream dispatcher hashing table operation time.

Fig. 9 presents the burst test results, including the

decoding times for all of the 552 bursts in the file. As

shown in the figure, in approximately 83% of bursts,

the processing times were between 50 and 70 ms. All

of the bursts, including operations that used the

platform adaptive layer and those that did not,

finished the processes within 120 ms.

Non PAL time compare with use PAL time

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100 110 120
Processing time(ms)

Account Non PAL
With PAL

Fig. 9. Burst processing time.

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 223

Some differences occurred in the test results that

finished between 50 and 60 ms, but the delivery time

was generally insignificant compared to the hardware

input/output time. Therefore, the total difference in

performance is very small when the platform

adaptive layer is used.

 Due to the optimization of the compilers and

uncertainties in the operating systems scheduler, the

processing times of some bursts were smaller than 10

ms, while other bursts took up to 120 ms to process.

This meets the Delta-T specifications (1250 ms) for

delivery from public television.

 The maximum average bit rate was only 512 kbps.

The software uses bytes as processing data units, so it

is only necessary to process 64 kb of data per second.

The processors of current handheld devices have

rates between 300 and 600 MHz, so processing the

data should not become an overhead issue of the

receiver. The image shown in Fig. 10 was decoded by

the DVB-H IP decapsulator described in this paper.

The program image was broadcasted over public

television, and had a resolution of 176*120. It was

played at its original size, matching the screen size of

current handheld devices.

Fig. 10. Played program image.

4 The Hardware Testing Environment

Table 4. List of hardware components.
Name of hardware

components
Manufacturer and model

Modulator DVB-T/H

ASI conversion card

(DVB ASI output)
DTA-100

RF antenna module SD10

DVB-H receiver antenna DiBcom DVB-H receiver

PDA
ASUS COMPUTER MyPal

A636

A personal computer was used at the transmission

end to open the transport stream file recorded from

public television. An ASI conversion card was used

to convert the DVH-H transport stream file into ASI

signals that were sent to the DVB-H modulator. The

ASI signals were modulated into radio frequency (RF)

signals via the DVB-H modulator, and the modulated

RF signals were transmitted using the RF antenna.

Table 5. ASUS COMPUTER MyPal A636 system

specification.
CPU processor XScale 416 MHz

Operating system Microsoft Windows Mobile 5.0

Memory
128 MB Flash ROM/64 MB

SDRAM

Expansion slots SDIO Slots

Fig. 11. Flowchart of the broadcasting experiment.

Fig. 12. Experimental hardware components and

DVB-T/H modulator.

Fig. 13. Real-time transmitted and decoded images.

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 224

At the receiver end, a DVB-H receiver antenna

received the signals. Our software-decoding

mechanism decoded the transport streams, and the

decoded images were played on the PDA. Table 4

provides a list of the hardware components used in

this experiment. Table 5 lists the specifications of the

hardware components. Fig. 11 presents a flowchart of

the broadcasting experiment. A picture of the

hardware components for the experiment is shown in

Fig. 12, and the real-time transmitted and decoded

images are given in Fig. 13. The DVB-H modulator

converted ASI signals into RF signals, and then the

RF signals were transmitted and broadcasted to the

PDA via the RF antenna. The PDA received the

transmitted signals using a DVB-H receiver antenna,

decoded the received signals, and played the decoded

images.

5 Conclusion
In this paper, we proposed a DVB-H IP decapsulator

mechanism that processes data streams delivered via

public television. Minimal differences were observed

between the DVB-H IP decapsulator processing

times for whole bursts with and without the platform

adaptive layer. At a maximum, both DVB-H IP

decapsulators finished processing all of the MPE

sections within 120 ms. The processing time

accounted for only 9.6% of the Delta-T, and therefore

met the requirement of decoding all MPE sections

within the Delta-T.

 A real hardware testing environment was

established to test the proposed decapsulator, and the

decoded images were played successfully on a PDA.

Fetching Delta-T from the first MPE section within

the burst took 1.666 µs, or 0.02% of the time

requirement of 7.5 ms, leaving enough time for the

physical layer to prepare to turn on the demodulator

before the arrival of the next burst.

 The DVB-H IP decapsulator is an important

component at the receiver end, and used to link

services between the upper layers and the physical

layer. When implemented, this data-linking layer can

be used as a research platform to develop

multiple-service applications in the future. We

anticipate the design and implementation of the

data-linking layer in this research to produce

additional DVB-H applications and designs, make

handheld televisions possible, and bring abundant

information resources to the users of handheld

devices.

References:

[1] DVB Document A092, “DVB-H Implementation

Guidelines,” European Telecommunications

Standards Institute.

[2] TS 101 154, “Digital Video Broadcasting (DVB);

Implementation Guidelines for the Use of Video

and Audio Coding in Broadcasting Applications

based on the MPEG-2 Transport Stream,”

European Telecommunications Standards

Institute.

[3] O. Eerenberg, A. Koppelaar, A. M. Stuivenwold,

P. H. N. de With, “IP-Recovery in the DVB-H

Link Layer for TV on Mobile,” IEEE

International Conference on Consumer

Electronics, 2006.

[4] F. Gerard, “DVB-H: Digital TV in the Hands!,”

International Exhibition and Conference:

Conference and Business Seminars Program,

2005.

[5] ETSI EN 302 304, “Digital Video Broadcasting

(DVB); Transmission System for Handheld

Terminals (DVB-H),” European

Telecommunications Standards Institute.

[6] EN 101 162, “Digital Video Broadcasting (DVB);

Allocation of Service Information (SI) and Data

Broadcasting Codes for Digital Video

Broadcasting (DVB) Systems,” European

Telecommunications Standards Institute.

[7] EN 300 468, “Digital Video Broadcasting (DVB);

Specification for Service Information (SI) in

DVB system,” European Telecommunications

Standards Institute.

[8] S. Drude, M. Klecha, “System Aspects for

Broadcast TV Reception in Mobile Phones,”

IEEE International Conference on Consumer

Electronics, 2006.

[9] E. D. Balaguer, F. H. P. Fitzek, O. Olsen,

“Performance Evaluation of Power Saving

Strategies for DVB-H Services Using Adaptive

MPE-FEC Decoding,” The 16th Annual IEEE

International Symposium on Personal Indoor and

Mobile Radio Communications, 2006.

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 225

