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Abstract: - This paper presents a way to obtain parameters of a direct-axis equivalent circuit of a synchronous 
generator from frequency response data using bi-objective genetic algorithms. The genetic algorithms is 
capable of finding a global minimum within a given search interval. The sum square error of magnitude and 
phase of the d-axis equivalent circuit transfer function to formulate a bi-objective optimization problem is 
minimized to best fit the measured data extracted from the frequency response test of the machine. As a result, 
exploitation of the bi-objective optimization based on Genetic Algorithms gives very good results than those 
of using either the magnitude or the phase as a single objective.    
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1   Introduction 
To date under deregulated power market 
environment electric utility has become increasingly 
much more complex that the past. Apart from 
economic view point, stability problems are equally 
important to operate electric power system in real 
time. To handle any stability-related problems 
accurate parameter estimation of a synchronous 
generator is concerned in both direct and quadrature 
models. Several kinds of tests are used to determine 
the direct-axis equivalent circuit parameters. These 
include on-line tests [1], standstill frequency 
response (SSFR) [2,3,4] and time domain [5] 
testing. From literature, the frequency response test 
has become one of the most popular approaches to 
obtain the synchronous transfer function parameters. 
With this method, the problem is reduced to find 
location of suitable poles and zeros of the machine 
transfer function. To complete this task, an efficient 
intelligent search method can be employed. Genetic 
algorithm (GA) is a searching method based on two 
natural processes: selections and genetics. It is 
considered as an evolutionary computation which 
has been proved to be a very powerful optimization 
method in an artificial intelligence area of interest. 
There have been various researches and applications 
of GA covering in most fields of studies. Therefore, 
it would be good for solving this problem based on 
the Genetic Algorithms. 
    This paper illustrates the way to apply the Genetic 
Algorithms to solve a bi-objective optimization 
problem in order to estimate a d-axis transfer 

function of a synchronous generator, which is 
explained in detail in section 2. Section 3 gives a 
brief of the step-by-step intelligent parameter 
estimation based on the Genetic Algorithms. Section 
4 shows test results and discussion. The last section 
is the conclusion. 
 
        
2   Direct-Axis Model Structure of a 
Synchronous Machine  
The direct-axis of a synchronous machine includes 
two terminal ports. These correspond to the direct-
axis equivalent armature winding and the field 
winding. The complete direct-axis equivalent circuit 
which second order model referred to the stator is 
shown in Fig.1 [6] 
  

 
 

Fig. 1. Direct-axis equivalent 
 

…, where 

lL     = armature leakage inductance 

adL   = stator to rotor mutual inductance 
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dfL 1 = mutual inductance between field winding and 

damper winding 

dL1  = damper winding leakage inductance  

dR1  = damper winding resistance  

fdL  = field winding leakage inductance 

fdR  = field winding resistance 

 
    The direct-axis specifically operational 
inductance (OI) transfer function Ld(s) of 
synchronous machine has the form given below 
[7,8]. It is the Laplace transform of the ratio of the 
direct-axis armature flux linkages to the direct-axis 
current, with the field winding short-circuited.  
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    Ld(s) is often expressed in terms of transient and 
subtransient quantities used [9], 
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…, where 

dL    = synchronous inductance (p.u.) 

dL ′    = transient inductance (p.u.) 

dL ′′    = subtransient inductance (p.u.) 

doτ′   = transient open-circuit time constant (secs) 

doτ ′′   = subtransient open-circuit time constant (secs) 

 
 

3 Bi-objective Intelligent Parameter 
Estimation Based on Genetic 
Algorithms 
There exist many different approaches to identify 
synchronous generator’s parameters. For the GA is 
not new anymore. There exist a hundred of works 
employing GA technique. GA is a stochastic search 
technique that leads a population of solutions using 
the principles of genetic evolution and natural 
selection, called genetic operators e.g. crossover, 
mutation, etc. With successive updating new 
generation, a set of updated solution gradually 
converges to the real solution. Because the Genetic 
Algorithms is very popular and widely used in most 
research areas where an intelligent search technique 

is applied, it can be summarized briefly as follows 
[10,11]. 
 
1. Initialization: Randomly initialize populations or 
chromosomes and set them as a search space and 
then evaluate their corresponding fitness value via 
the objective function. 
2. Evolution: Apply the genetic operators to create 
an offspring population as the sequence below, 
    a. Selection: Form a set of mating pool with the 
same number of the population size by using a 
random procedure, e.g. the roulette-wheel or 
tournament schemes, with the assumption that each 
chromosome has a different chance. The higher the 
fitness value, the higher the chance or probability. 
    b. Crossover: This operation is applied to a subset 
of the mating pool by taking a pair of chromosomes 
called the parents. The parents will yield a pair of 
offspring chromosomes. This operation involves 
exchanging sub-string of the parent chromosomes. It 
is performed by choosing a random position in the 
string and then swapping either the left or right sub-
strings of this position (one-point crossover) with its 
chromosome mate.   
    c. Mutation: For the chromosome to be mutated, 
the values of a few positions in the string are 
randomly modified. To prevent complete loss of the 
genetic information carried through the selection 
and crossover processes, mutation (if use at all) is 
limited to typically 2.5% of the population.   
3. Fitness Test: Evaluate the fitness value for the 
generated offspring population. 
4. Convergence Check: Check for violation of all 
termination criteria. If not satisfied, repeat the 
evolution process. 
 
    In this paper, the Genetic Algorithms is selected 
to build up an algorithm to identify such parameters. 
Briefly, the procedure to perform the proposed 
identification is described as follows. First, 
frequency responses of magnitude and phase based 
on SSFR test data of a synchronous generator are 
measured. Second, the Genetic Algorithms is 
employed to generate a set of initial random 
parameters. With the searching process, the 
parameters are adjusted to give response best fitting 
close to the test data. To perform the searching 
properly, a bi-objective function is the key. In this 
paper, the sum of squared errors (SSE) [12] is used 
as shown in the following equation. 
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with the bi-objective function 
 
    phasephasemagmagobj-bi SSE)(SSE)(f ⋅+⋅= WW  (4) 

 
and 
 
    1.0)()( phasemag =+ WW     (5) 

 
…, where  
  obj-bif     is the bi-objective function  

 W          is the weighted SSE of magnitude or phase   
on frequency response characteristics   

 measuredy  is the measured magnitude or phase on  

frequency response characteristics        

simulatedy  is the simulated magnitude or phase on  

frequency response characteristics        
 

 

4   Results and Discussion 
The followings describe parameter setting for the 
Genetic Algorithms used in this paper. 
 
GA: 
Number of population = 50 
Crossover probability = 70 % 
Mutation probability = 1.4 % 
 
Variable search spaces: 

dL   ∈  [0.50, 4.00] 

dL ′   ∈  [0.05, 1.00] 

dL ′′   ∈  [0.01, 0.50] 

doτ′  ∈  [1.00, 8.00] 

doτ ′′  ∈  [0.01, 0.10] 

 
Termination criteria: 
Maximum error allowance = 0.01 (SSE) 
Maximum number of iteration = 1500 
 
    Table 1 also shows the parameters of turbine 
generator, 555 MVA/24 kV/60 Hz/0.9 pf [13] 
obtained by using the experimental and the Genetic 
Algorithms with bi-objective by various weighted 
SSE. The values appeared in this table is the best of 
30 trials.  
    Comparing with the experimental results and the 
effectiveness and the accuracy of each Genetic 
Algorithms with bi-objective by weighted SSE are 
revealed as shown in Fig.2 - Fig.6. 
 
 

Table 1. Comparison among obtained parameters  
 

        Parameters 
Methods 

dL  

(p.u.) 
dL ′  

(p.u.) 
dL ′′  

(p.u.) 
doτ′  

(secs) 
doτ ′′  

(secs) 
Experimental 1.9700 0.2700 0.1270 4.3000 0.0310 

GA,  
mag1.00-phase0.00 

2.1273 0.2845 0.1477 4.3111 0.0427 

GA,  
mag0.75-phase0.25 

2.0991 0.2917 0.1428 4.4120 0.0355 

GA,  
mag0.50-phase0.50 

1.8957 0.2530 0.1183 4.3265 0.0284 

GA,  
mag0.25-phase0.75 

1.9803 0.2785 0.1295 4.4444 0.0315 

GA,  
mag0.00-phase0.10 

2.2632 0.3082 0.1449 4.2615 0.0327 

 

 

Fig. 2. Frequency response characteristics of the 
experiment and the Genetic Algorithms with bi-
objective by weighted SSE (magnitude=1.00 and 

phase=0.00) 

 
 

Fig. 3. Frequency response characteristics of the 
experiment and the Genetic Algorithms with bi-
objective by weighted SSE (magnitude=0.75 and 

phase=0.25) 

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007      431



 
 

Fig. 4. Frequency response characteristics of the 
experiment and the Genetic Algorithms with bi-
objective by weighted SSE (magnitude=0.50 and 

phase=0.50) 

 
 

Fig. 5. Frequency response characteristics of the 
experiment and the Genetic Algorithms with bi-
objective by weighted SSE (magnitude=0.25 and 

phase=0.75) 
 
    As can be seen, the results simulated by using the 
parameters obtained from the bi-objective Genetic 
Algorithms are satisfactory and very much better 
than those estimated by using a single objective 
function because in frequency domain magnitude 
and phase are equally essential characteristics that 
cannot be ignored.   
 

 
 

Fig. 6. Frequency response characteristics of the 
experiment and the Genetic Algorithms with bi-
objective by weighted SSE (magnitude=0.00 and 

phase=1.00) 
 

 

5   Conclusion 
This paper illustrates the bi-objective genetic 
algorithms to estimate parameters of a direct-axis 
equivalent circuit transfer function of a synchronous 
generator. As a result, magnitude and phase of its 
frequency response characteristics simulated from 
the proposed method look good and rather fit to 
those obtained from the test data. However, to 
utilize the bi-objective optimization is crucial due to 
the difficulty of selecting weighted factors. It is 
problem-dependent and system designers must 
experience how to choose the weighted factors 
themselves in order to gain most advantages from 
the parameter estimation proposed in this paper.        
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