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Abstract: This article adresses the issue of selecting surrogate models suitable for the global optimization of 2D
turbomachinery flows. As a first step towards this goal the analysis of a family of flows on a two-parameter design
space is presented. Four types of surrogate models are considered : least square polynomials, artificial neural
networks (multi-layer perceptron and radial basis function) and Kriging. Discussed is the ability of these surrogate
functions to give a satisfactory description of the exact function of interest on the design space, during a global
optimization. The number of CFD evaluations for an adequate description of the exact function is presented.
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1 Introduction

Shape optimization is one of the most important ap-
plication of computational fluid dynamics (CFD). For
example, the drag-reduction of an aircraft with con-
straints on the lift, geometry and momentums is a
prominent issue of external aerodynamics. In the
field of internal flows, minimization of total-pressure
losses of a blade row is an important and classical
issue. Despite the huge amount of work devoted to
aerodynamic shape optimization during the three last
decades, no specific algorithm has appeared to be re-
ally adequate for all problems or at least for a very
wide range of problems.
Since the mid 70’s and the landmark papers of Hicks
and VanderPlaats, local optimization using the gradi-
ent of the functions of interest with respect to the de-
sign parameters have focused much attention [12]. In
the late 80’s and at the beginning of the 90’s it ap-
peared that those gradients could be computed by the
so-called adjoint vector method [4] or direct differen-
tiation method [5] instead of the costly finite differ-
ence method. Local optimization of a parametrized
solid shape, combining adjoint vector method, a de-
scent method -like feasible descent [7] - and some
kind of mesh deformation tool became very popular.
ONERA has developped both discrete adjoint vector
and discrete direct method in the aerodynamic code
elsA [1, 3, 15], and demonstrated its ability to carry
out optimization of 3D industrial configurations [2].
In other respects, several authors considered the is-
sue of global aerodynamic optimization. Almost all

types of global optimization strategies were consid-
ered with a significant emphasis on genetic algorithms
[6]. The authors interested in this method had to face
the bottleneck of the huge cost of the numerous exact
evaluations of design requested by the optimization
algorithm. To circumvent this issue, many authors re-
placed some of the exact evaluations (by the CFD and
post-processing code) by those provided by a well de-
fined surrogate-model [9, 10].
This article deals with the problem of global optimiza-
tion for transonic flows [11], focusing on the actual
search for the most adapted surrogate model for a tur-
bomchinery design optimization problem. It is orga-
nized as follows. Geometry, governing equations and
design space are presented in section 2. The surrogate
models we consider are detailed in section 3. The abil-
ity of these surrogate functions to give a satisfactory
description of the exact function of interest on the de-
sign space is discussed in section 4.

2 Description and analysis of the tur-
bomachinery flow

2.1 Nominal geometry
The considered test case is derived from the stator
blade of VEGA2 configuration, which is a classical
stator rotor turbine configuration [13]. Due to the high
cost of global optimisation, only a 2D geometry de-
duced from an appropriate projection of the 3D ge-
ometry at the hub, is studied. The 4 domains mesh
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with matching joins is presented in figure 2, where
the caracteristic length of the blade,L = 90mm,
can be measured. The total number of mesh points is
11816. Periodicity conditions are applied at the lower
and upper borders. The aerodynamic data of the
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Figure 1: mesh of nominal 2D configuration

Figure 2: iso Mach-number lines of nominal 2D con-
figuration

subsonic inlet areTi = 288, 27K, pi = 101325Pa.
The direction of the flow at the inlet is also con-
strained along thex axis. At the outlet the static
pressure is fixed. Its ratio to the inlet total pressure
is ps exit/pi = 0.35. The eddy viscosity is deter-
mined by Sutherland law The Reynolds number of
the flow based on the stagnation condition is then
Re = (ρiaiL)/µ(Ti) = 2, 09.105

2.2 Flow computation

The Reynolds averaged Navier-Stokes equations are
considered. The turbulent viscosity is computed
by Smith k − l model. The seven-equation non-
linear system is solved numericaly by the ONERA
finite-volume cell-centred code for structured meshes,
called elsA [15]. Second order Roe-flux (using
MUSCL approach with Van Albada limiting function)
is used for mean flow convective term, the first or-
der Roe flux is used for turbulent variable convective
term, centred fluxes with interface centred evaluation
of gradients are used for both diffusive terms. Cen-
tred formula is used for the source term of turbulent
variables equations. More details can be found in ref-
erence [14], which also indicates a good comparison
with experimental data for the original 3D geometry.
Due to the low value of the static pressure at the exit,
the flow is sonic at the narrowest section between two
blades, near the trailing edge (just like in a shocked
nozzle). Two strong shock lines (one going along the
x axis, the other being oblique) start from the trailing
edge of the blade. A view of the iso-Mach number
lines in presented.

2.3 Design space

The geometric deformation of the blade consists in
moving the trailing edge along bothx andy axis. The
leading edge is fixed. The deformed shape of the blade
is defined by a smooth algebraic function of the curvi-
linear coordinate. The displacement is damped out
from the solid shape to the fixed boundary of the blade
domain (see mesh plot). The maximum displacement
in each direction is±0.4 mm. The displacement along
the x axis is the first design parameterα1, the dis-
placement along they axis is the second design pa-
rameterα2. The main output of the computation is
the total pressure at the exit, computed by integration
on the exit surface. Its non dimensional value (actual
value divided by inlet value) varies from 0.918 to .924,
on the design space. Of course such low values appear
because of the strong shocks. This variation is large
enough to define an optimization problem.
A large regular sampling of design space with21×21
points is considered. All corresponding flows are
computed with exactly the same numerical parame-
ters. The explicit space residual of the scheme is de-
creased for all design by four to five orders of mag-
nitude for all computations. The plot of the exit
total pressure on the design space is presented. It
was checked that the variation of total pressure when
the design changes corresponds to a change in the
strength of the oblique shock.
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Figure 3: exit total pressure as function of design pa-
rameters (axis plane does not correspond to zero)

3 Brief description of the surrogate
models

The exact function of interest (exit total pressure for
the application) isJ (α). The description of the surro-
gate models is limited to the case of a two-component
design vectorα. The number of available exact evalu-
ations of functionJ (α) is notedns. The mean square
error (MSE) on the sampling between the exact func-
tion J (α) and the surrogate modelJ (α) is denoted
by E .

E =
1
2

ns∑

i=1

(
J (αi

1, α
i
2) − J (αi

1, α
i
2)
)2

The vector of the exact evaluations isJs. Js =[
J (α1), . . . ,J (αns)

]T

3.1 Least square polynomials
This method is both simple and well-known. Hence
its presentation is limited to a degree two polynoms,
altough polynoms of degree two, four, six and eight
have been considered for the application. Suppose

J (α) = Ψ0+Ψ1α1+Ψ2α2+Ψ11α
2
1+Ψ12α1α2+Ψ22α

2
2

The coefficients of the polynom are found by minimis-
ing the MSE on the sampling. This leads to

Ψ = (XT X)−1XTJs

With Ψ = [Ψ0 Ψ1 Ψ2 Ψ11 Ψ12 Ψ22]T and

X =


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

3.2 Multilayer perceptron
Although a wide range of multi-layer perceptrons can
be conceived, refering to the universal approximation
theoremfor neural networks[16], we have decided to
use the multi-layer perceptron with just one hidden
layer pictured in Fig 4. The activation function of the
hidden layer units is the sigmoide function, and the
final output of the network is simply a weighted sum
of the hidden layer outputs. A bias value is added
to the inputs and to the outputs of the hidden layer.
Given a set ofns exact computed responses, the learn-
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Figure 4: two layers perceptrons

ing process aims at determining the set of the4nc + 1
unknown coefficientsω = [a11, . . . , bnc ] so that the
mean squared errorE is minimal, where

J (α1, α2) = b0 +
nc∑

j=1

bjtanh (a0j + a1jα1 + a2jα2)

To find such a set of weights, a steepest descent opti-
mization is performed. Once the gradient of the MSE
with respect to the unknown coefficients is calculated,
the Wolfe method is used to minimize the MSE in
the gradient opposite direction. An iterative process
is carried out till the gradient value is small enough.
The initialization of the unknown coefficients set is an
important matter for the method. In the present work,
the initial guess of the gradient based search is chosen
randomly.

3.3 Radial basis function network
The radial basis function network[17] used in this
study is composed ofnc radial functionsf̂i

f̂i(α1, α2) = exp

(
−1

2
(α1 − αi

1)
2 + (α2 − αi

2)
2

r2
i

)

where
(
αi

1, α
i
2

)
andri are respectively the center and

the radius of the radial function. The output of the
network is given by the following formula:

J (α1, α2) =
nc∑

i=1

aif̂i(α1, α2)
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whereA = [a1, a2, . . . , anc ] is a set of coefficients
to determine depending on the exact function to ap-
proximate. Given the vector ofns (ns ≥ nc) ex-
act valuesJs, the minimization of the (MSE) leads
to A = (XT X)−1XTJs whereX is the following
ns × nc matrix

X =




f̂1(α1
1, α

1
2) . . . f̂nc(α1

1, α
1
2)

...
...

...
f̂1(αns

1 , αns
2 ) . . . f̂nc(α

ns
1 , αns

2 )




Taking the assumption that the number of centers has
been fixed, the RBF approximation model is fully de-
termined once the center and radius of every function
is chosen. In this article, every function has the same
radius

r =
1
nc

(
max

1≤i,j≤ns

√
(αi

1 − αj
1)2 + (αi

2 − αj
2)2
)

Moreover, we have picked the radial function centers
to coincide with the exact function evaluations points,
so thatA = X−1Js

3.4 Kriging

Considering that the value ofJ at the center of the de-
sign space is a good approximation of its mean value
m, simple Kriging is considered [8]. The statistical
basis of the method cannot be described in the limited
space of this article. Based onns sampling points, the
formula of the simple Kriging is a linear interpolation
of the known values (applied toZ(α) = J (α) − m )

Z(α) = Kα
T C−1Zs = ZT

s C−1Kα

(as matrixC is symmetric) with

Kα = [Cv(Z(α),Z(α1)), ..., Cv(Z(α),Z(αns )]T

Zs = [Z(α1), . . . ,Z(αns)]T

C =




Cv(Z(α1),Z(α1)) . . . Cv(Z(αns),Z(α1))
...

...
...

Cv(Z(α1),Z(αns)) . . . Cv(Z(αns),Z(αns))




The method is fully defined when the functionCv
is selected (it is the covariance of the functionZ
in the statistical framework of the method descrip-
tion). Most often the following function is casted
Cv(Z(αa),Z(αb)) = σ2exp(−θ||αa −αb||) The pa-
rameters (σ, θ) are defined in this study as proposed
by Jouhaud et al. [11].

4 Evaluation of the surrogate model
for design optimization

The goal of this section is to discuss the efficiency
of the surrogate models for the sake of optimization.
For the studied two-parameter problem, the computa-
tion of the surrogate models coefficients is neglectible
compared to the cost of one CFD computation. For
this reason the efficiency of a surrogate approxima-
tions for the optimization problem can be measured
by the requested number of exact evaluations.
For all surrogate functions the strategy of sampling
enrichment is the same :
a- start with a large enough sampling to determine all
coefficients. This initial sampling is built on latin hy-
percubes.
b- add points if criterion (C*) -see below- is not
achieved
b1- if the min and max locations of the surrogate
model are not all in the sampling add the missing one
b2- else add to the sampling the four points with max-
imum distance to the points of the sampling

4.1 Definition of the evaluation criterion.
Main results

The function of interest exhibits one global maximum
(-0.4,0.4), one local maximum (0.04, 0.4), two local
minima (-0.2,-0.4), (0.4,0.08) and one global minima
(0.4,-0.4) on the 21×21 sample. A surrogate recon-
struction will be tested against the following criterion:
(C1) abilitiy to build an approximation with mean er-
ror E on the 21×21 sampling lower than2.10−3. The
mean errorE being adimensioned by the variation of
exit static pressure on the design space

E =

√
∑21

i,j=1

(
pi(α

ij
1 , αij

2 ) −J (αij
1 , αij

2 )
)2

212 × (pi max − pi min)

(C2) find the two local maxima, their location being
exact or in a neighboring point of the exact place on
the 21×21 sampling.
(C3) find the global and local maxima at the right
place on the21 × 21 sampling.
The reason for (C2) is that the second order deriva-
tives values are rather low near the maxima so that
(C3) is difficult to reach. The results are summarized
in table 1. (IT) indicates the number of exact evalu-
ations needed to satisfy a criterion. Indicated is also
the value ofE after 100 CFD computations for all four
surrogate models.
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Sur. Mod C1 IT C2 IT C3 IT E(100)

Pol. 2 KO - KO - KO - 2.3e−3

Pol. 4 KO - KO - KO - 2.1e−3

Pol. 6 OK 56 KO - KO - 1.2e−3

Pol. 8 OK 73 OK 73 OK 73 4.9e−4

Mu.Pe. OK 300 KO - KO - 2.5e−3

RBF OK 37 OK 38 OK 46 1.6e−3

Sim Kri OK 26 OK 62 OK 170 4.0e−4

Table 1: Summary of surrogate model performances

4.2 Discussion of the results

From a general point of view, it is clear that RBF and
Simple Kriging lead to the best results. Both of them
satisfy the (C2) criterion with a reasonable number of
exact evaluations. As concerning (C3) only (RBF) and
degree-8 polynom satisfy it with an acceptable num-
ber of exact evaluations. The surrogate function sur-
faces satisfying (C3) are presented in figures 5 and 6.
More details are given below concerning the different
surrogate models.
• Least square polynomials
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Figure 5: Kriging surface satisfying (C3)

Obviously the exact surface cross-sections (α1 =const,
or α2=const on Fig.3) are much more complicated
than parabols, which means that the exact function
can not be well fitted with a second order polynom.
Considering the plots obtained with degree-4 and 6
polynoms, this seems also to be the case. As concern-
ing the degree 8 polynom, construction algorithm is
started with a 45 sampling (number of coefficients).
At step (b1) 28 points are added leading to 73 points
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Figure 6: RBF surface satisfying (C3)

for the second sampling. A more sophisticated strat-
egy of sampling enrichment could have led to lower
numbers of exact evaluations to satisfy the (C*) crite-
rions. This surrogate function obtained based on the
73 exact evaluations has almost the same aspect as the
exact one.
• Radial basis function network
It has also been checked for (RBF) network that the re-
sults depend only slightly on the initial six-point sam-
pling.
• Multi-layer perceptron
Two multi-layer perceptrons have been tested, respec-
tively with 5 and10 units in the hidden layer. The first
requires almost the whole exact CFD evaluations to
satisfyC1, as for the second, up to200 evaluations are
actually needed. But in spite of the global optima be-
ing located from42 evaluations, none of these percep-
trons succeeds in locating the local optima. Besides,
from a sampling of50 evaluations, the computed error
does not vary much from2.4 10−3.
• Simple Kriging
This method leads to the lower error(E) after a def-
inite number of iterations. Nevertheless it is not the
most efficient for the accurate detection of the two
maxima.

5 Conclusion

This article presented how four types of surrogate
models can be used in an industrial context to design
a stator blade so as to optimize the total pressure
at the exit. Among all the models that have been
tested, the simple Kriging model and the radial basis
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function network appear to give the best results
in terms of approximation of the exact function.
However, the Kriging model used in this study has
not taken advantage of its error estimation, which
could have improved the approximation results.
Besides, including the available gradient information
could also be used as a way to enhance the level of
approximation reached by the best models. Only a 2D
configuration has been considered, we plan to extend
the framework depicted here to 3D cases.
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