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Abstract: - This paper presents an intelligent approach to identify parameters of single-phase induction motors. 
Because of the complication of space-phasor equations describing its dynamic behaviors, the parameters of 
single-phase induction motors could be roughly estimated via conventional tests based on the steady-state 
analysis. Therefore, they may cause inaccurate estimation.  In this paper, some efficient intelligent search 
techniques, i.e. (i) Genetic Algorithm (GA), (ii) Particle Swarm Optimization (PSO), and Adaptive Tabu 
Search (ATS), are employed to demonstrate the intelligent identification. The effectiveness of the proposed 
approach is assured when comparing with the conventional parameter tests.   
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1  Introduction 
To characterize the performance of single-phase 
induction motors, steady-state analysis has become 
a powerful tool over half a century [1],[2]. It is 
satisfactory to describe steady-state behaviors of 
single-phase induction motors to perform simple 
control. However, nowadays, a very accurate 
torque-speed control of single-phase induction 
motors by using the space-phasor theory, called 
vector control, is increasingly required by industries 
[3],[4]. Therefore, accurate parameter identification 
of single-phase induction motors is challenged. 
Many methods of parameter identification, for 
example [5],[6],[7], have been proposed. However, 
there is no strong evidence to verify their use in 
industries. 

This paper introduces an alternative approach to 
identify parameters of single-phase induction 
motors based on intelligent search techniques. The 

space-phasor model is employed to represent single-
phase induction motors’ behaviors. Parameters 
appeared in complex space-phasor models can be 
adjusted and improved by using a simple tuning 
scheme proposed in this paper. Three efficient 
intelligent search techniques, i.e. Genetic Algorithm 
(GA) [8], Particle Swarm Optimization (PSO) [9], 
and Adaptive Tabu Search (ATS) [10], are 
employed to perform the proposed identification 
approach. Moreover, comparisons among results 
from conventional identification method and those 
from intelligent identification approach are 
examined and discussed.  

This paper consists of five sections. Section 2 
provides modelling of a single-phase induction 
motor. Intelligent parameter identification is 
described in Section 3. The results of experiment 
and simulation are provided in Section 4, while 
conclusions are given in Section 5.  
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2  Modelling of Induction Motor 
Single-phase induction motors can be characterized 
by several different models. The space-phasor 
approach [2],[4] is the method used in this paper. 
With this model, motor currents, torque and speed 
can be observable. The space-phasor model is very 
complicated and needs more space for explanation. 
However, in this paper only a brief description is 
presented as follows. 

Figure 1 describes winding alignment of a 
single-phase induction motor consisting of main and 
auxiliary windings with their induced voltages and 
currents. As shown in the figure, a stationary 
reference frame which is along the axis of the main 
stator winding is defined and used for mathematical 
analysis throughout this paper. It is essential to 
inform that all quantities especially on the rotor 
need to be transferred to the stator axis. 
 

 
 
Fig. 1 Winding alignment of a single-phase  
 induction motor. 
 

By using appropriate transform matrix, all state 
variables can be transformed into the stator direct 
axis as shown in (1). 
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…, where Rqs is stator resistance of the main 
winding, Rds is stator resistance of auxiliary 
winding, Lls is leakage inductance of the main 
winding, Lls is leakage inductance of the auxiliary 
winding, Lmqs is mutual inductance on the stator q-
axis, Rr is rotor resistance, and Llr is leakage 
inductance of the rotor q-axis.  

As can be seen, the two mechanical quantities, 
the rotor speed ωr and the rotor position θr, cause 
the need for additional two equations which can be 
obtained from Newton’s second law of motion as 
shown in (2). All above equations can be combined 
as stated in (3), where Jm is motor’s moment of 
inertia and Bm is damping coefficient.  
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3 Intelligent Parameter Identification 
Traditionally, the no-load test, the locked-rotor test, 
and retardation test are all together used as the 
conventional method to identify single-phase 
induction motor’s parameters. Based on the steady 
state model, such the conventional method cannot 
be used to estimate parameters, accurately and 
precisely. In this paper, some intelligent search 
techniques are used to identify such parameters.  
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The use of artificial intelligent search technique 
to identify single-phase induction motor’s 
parameters can be represented by the block diagram 
in Figure 2. The speed response of a tested single-
phase induction motor is firstly measured. The 
selected intelligent search technique is employed to 
generate a set of initial random parameters. During 
the search process, the cost function, J, the sum of 
squared error (SSE) between the measured  speed 
(y) and the simulated speed (y*) as stated in (4), is 
fed back to the AI search engine block. J is 
minimized to find the appropriate parameters that 
give the simulated response from the space-phasor 
model best fitting close to the measured response. 
Selected intelligent search techniques used in this 
work, i.e. (i) Genetic Algorithm (GA), (ii) Particle 
Swarm Optimization (PSO), and Adaptive Tabu 
Search (ATS), are summarized.  
 

( )2*

1

N

i i
i=

J y y= −∑    (4) 

 
 

Fig. 2 Intelligent parameter identification. 
 
3.1   Genetic Algorithm (GA)  
The GA [8] is a stochastic search technique based 
on two natural processes, i.e. selection and genetic 
operation. The search process of the GA is similar to 
the nature evolution of biological creatures in which 
successive generations of organisms are given birth 
and raised until they themselves are able to breed. 
The GA algorithm is summarized as follows. 
 
  (1) Randomly initialize populations or 

chromosomes and set them as a search 
space. 

 (2) Evaluate the fitness value of each 
chromosome via the objective function. 

 (3) Select some chromosomes giving better 
fitness value to be parents. 

 (4) Reproduce new generation (offspring) by 
genetic operations, i.e. crossover and 
mutation.   

 (5) Compute the fitness value of each new 
chromosome via the objective function. 

 (6) If the termination criteria are met, stop the 
search process. The optimum solution found 
is the best chromosome in a search space, 
otherwise replace old chromosomes by new 
ones and go back to (2).  

 
3.2   Particle Swarm Optimization (PSO)  
Inspired by the sociological behavior associated 
with birds flocking, the PSO was proposed [9] as a 
simple model of lives’ group. In the original 
concept, particles fly through the solution space 
with two factors, i.e. the best position of each 
particle (personal best), and the group’s best 
position (global best). Based on the notion of 
particle flying, the PSO algorithm updates a particle 
by moving towards the particle’s past personal best 
and the best particle that has been found. In 
addition, the particle’s velocity is an important key 
used to define the direction of particle’s motion. The 
motion’s direction of all particles will be improved 
correspondingly to that of the best particle. The PSO 
has a powerful performance in finding global 
optimum. The PSO algorithm is briefly described as 
follows. 
 
  (1) Initialize particle swarm and set it as a 

search/solution space. 
 (2) Evaluate the fitness value of each particle 

via the objective function. 
 (3) Investigate and improve the personal best 

and the global best.  
 (4)  Improve each particle’s velocity. 
 (5) If the termination criteria are met, stop the 

search process. The optimum solution found 
is the best particle in a group, otherwise 
improve all particles and go back to (2).  

 
3.3   Adaptive Tabu Search (ATS)  
The ATS [10] is also a stochastic search technique 
based on iterative neighborhood search approach for 
solving combinatorial and nonlinear problems. The 
Tabu list is used to record a history of solution 
movement for leading a new direction that can 
escape a local minimum trap. In addition, the ATS 
method has two additional mechanisms, namely 
back-tracking and adaptive search radius, to 
enhance its convergence. The ATS algorithm is 
summarized as follows. 
 
 (1) Initialize a search space.  
 (2) Randomly select an initial solution xo from 

the search space. Let xo be a current local 
minimum. 
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 (3) Randomly generate N solutions around xo 
within a certain radius R. Store the N 
solutions, called neighborhood, in a set X. 

 (4) Evaluate a cost function of each member in 
X. Set x1 as a member that gives the 
minimum cost in X. 

 (5) If x1<x0, put x0 into the Tabu list and set 
x0=x1, otherwise, store x1 in the Tabu list 
instead. 

 (6) Activate the back-tracking mechanism, 
when solution cycling occurs. 

 (7) If the termination criteria are met, stop the 
search process. x0 is the best solution, 
otherwise activate the adaptive search radius 
mechanism, when a current solution x0 is 
relatively close to a local minimum to refine 
searching accuracy, and go back to (2).   

 
4  Results and Discussions 
To perform the effectiveness of the proposed 
intelligent identification, a 0.5-hp, 220-V, 50-Hz, 4-
poles, single-phase, squirrel-cage induction motor is 
used for test as shown in Figure 3. With the 
conventional method, no-load, locked-rotor, and 
retardation tests, the parameters of the single-phase 
induction motor can be obtained as shown in  
Table. 1.  
 

 
 

Fig. 3 Experimental set up. 
 

For intelligent identification, the GA, the PSO, 
and the ATS are used, respectively. In this work, 
parameter settings for these three intelligent 
methods are as follows: GA-{number of population 
= 50, crossover probability = 70%, and mutation 
probability = 4.7%}; PSO-{number of particle = 20, 
and maximum velocity = 15}; ATS-{number of 
neighborhood = 40, search radius R = 10% of the 
search space, activate back-tracking mechanism 

when solution cycling = 5, and invoke adaptive 
search radius mechanism using R = 0.8*R when 
number of solution cycling = 20, 40, 60, 80}. The 
parameters of the single-phase induction motor 
obtained from conventional method are used to 
perform search spaces for these three intelligent 
methods as follows: Rqs∈ [2, 8], Rr ∈ [20, 30], Rds ∈ 
[4, 10], Llqs∈ [0.0005, 0.05], Llr ∈ [0.0005, 0.01], 
Llds∈ [0.1, 1], Lmqs∈ [2, 20], Jm ∈ [0, 0.01], and Bm 
∈ [0, 0.01]. In this work, the termination criteria for 
three intelligent methods are set as follows: (i) 
maximum number of iteration/generation = 100, (ii) 
maximum sum of squared error allowance (SSEmax) 
= 3.600×104.     

Table 1 also shows the parameters obtained by 
three intelligent search techniques. As parameters 
listed in Table 1, although some parameters 
obtained from intelligent search techniques met the 
bound of their correspondingly search spaces, it has 
no necessary to extend such the search spaces. This 
is because the termination criteria are satisfied and 
the search spaces formed from the conventional-
based parameters should not be extended more so. 
From four sets of parameters in Table 1, the rotor 
speed, the stator current, and the motor torque can 
be simulated and depicted through the space-phasor 
model as illustrated in Section 2. The effectiveness 
and the accuracy of each method are revealed when 
comparing with the experimental results as shown in 
Figure 4-7. In addition, the sums of squared error of 
each method are reported in the value of SSE in the 
figure.         

Table 1. Comparison among obtained parameters 

AI Search Techniques Parameters Conventional 

GA PSO ATS 
Rqs(Ω) 5.27 4.00 2.00 2.00 
Rr(Ω) 25.91 28.07 28.35 28.35 
Rds(Ω) 6.07 8.00 4.00 4.00 
Llqs(H) 0.002 0.01 0.0005 0.0006 
Llr(H) 0.002 0.001 0.0005 0.0006 
Llds(H) 0.603 0.57 0.70 0.70 
Lmqs(H) 15.86 10.00 20.00 19.98 
Jm(N.m.s2/rad) 0.008 0.01 0.01 0.009 
Bm(N.m.s/rad) 0.003 0.00 0.001 0.0009 

 
5 Conclusions 
An intelligent approach to identify parameters of 
single-phase induction motors has been proposed in 
this paper. Based on the steady-state analysis, the 
parameters of induction motors could be roughly 
estimated by conventional methods. In this paper, 
efficient intelligent search techniques, i.e. GA, PSO, 
and ATS, have been employed to identify single-
phase induction motors’ parameters. As results, the 
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responses simulated by using the parameters 
obtained from the selected intelligent search 
techniques give very much better wave-shape than 
those obtained from the conventional method.  The 
responses obtained from the use of the GA, the 
PSO, and the ATS are relatively close to the 
experimental ones. It can be concluded that the 
effectiveness of the proposed intelligent 
identification approach has been confirmed.      
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(a) Speed responses  
   
 
 
 
 
 
 
 
 
 
 
(b) Current response 
 

  
 
 
 
 
 
 
 
 
 
(c) Torque response 
Fig. 4 Responses of experiment and simulation  
  from conventional method. 
 
 
 
 
 
 
 
 
 
 
 

(a) Speed responses  
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 (b) Current response 
 
  
 
 
 
 
 
 
 
 
 
(c) Torque response 
Fig. 5 Responses of experiment and simulation  
  from GA-based method. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Speed responses  
  

 
 
 
 
 
 
 
 
 
 

(b) Current response 

 

 

 

 
  

 
 
 
 
 
 
 
 
 

(c) Torque response 
Fig. 6 Responses of experiment and simulation  
  from PSO-based method. 
   

 
 
 
 
 
 
 
 
 
 
(a) Speed responses  
   
  
 

 

 

 

 

 

(b) Current response 
  

  
 
 
 
 
 
 
 
 
 
 
(c) Torque response 
Fig. 7 Responses of experiment and simulation  
  from ATS-based method. 
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