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Abstract: Regression is arguably the most applied data analysis method. Today there are many scenarios where data
for attributes that correspond to predictor variables and the response variable itself are distributed among several
parties that do not trust each other. Privacy-preserving data mining has grown rapidly studying the scenarios where
data is vertically partitioned. While algorithms have been developed for many tasks (like clustering, association-
rule mining and classification), for regression, the case of only two parties remains open. Also open is the most
interesting case when the response variable is to be kept private. This paper provides the first set of algorithms that
solves these cases. Our algorithms are practical and only require a commodity server (a supplier of random values)
that does not collude with the parties. Our protocols are secure in the spirit of the the semi-honest model.
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1 Introduction

Regression is one of the most widely used statistical
tools in data analysis. Regression allows to model a
relationship between an attribute considered the re-
sponse and other attributes considered to influence
such response. In this case, this is often called mul-
tiple regression. Linear regression assumes that the
relationship between the response and a number of at-
tributes is linear. Linear regression is perhaps the most
successful statistical method in data analysis.

Statistical regression modeling typically assumes
that the data is freely available. However, data collec-
tion may be among several agencies resulting in large
and rich but distributed databases. The parties may
not wish to share their data, or may be in no position to
share their data although they would all benefit from
the statistical analysis on the joined database. For ex-
ample, data analysis is regarded as one of the most
useful tools for the fight on crime [11]. However, the
information needed resides with many different gov-
ernments and/or corporations and these parties may
not mutually trust each other. Legal or constitutional
limitations, or conflicts of interest may pose demands
on privacy. But all parties are aware of the benefits
brought by analyzing the collective datasets.

When privacy-preserving is an issue, integration
of a single database is only a partial answer [5, 8, 9].

All partners of the collaboration promise to provide
their private data, but none wants partners or any third
party to learn their private data. This context demands
effective and efficient algorithms for privacy preserv-
ing regression [8, 9, 10, 15]. In the privacy preserving
model, data is distributed over several parties and the
goal is to compute linear regression by preserving the
confidentiality of each party’s data.

We present new methods for privacy-preserving
regression analysis. Specifically, we provide advances
in three aspects. First, our methods are the first meth-
ods to address the issue when the response variable
is not common knowledge to all parties. Second, we
also deal effectively with the case of only two par-
ties. Third, we can produce coefficients and other in-
termediate data in shares, which allows repetition, re-
calculation and detailed analysis of model quality and
fit.

We will briefly introduce necessary terminology
and discuss the current state of progress on privacy
preserving regression in the next section. We then
treat separately bilinear from multiple linear regres-
sion, because they require different solutions. We
show then how to compute residuals which allows
model evaluation and model selection.
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2 Regression in the Privacy-
Preserving Context

Regression analysis examines the relationship of a de-
pendent variable Y (the response variable) to speci-
fied independent variables (the predictors). Regres-
sion is a fundamental tool in data analysis used for
prediction, modeling of casual relationships, and sci-
entific hypothesis testing about relationships between
variables among many other uses. The mathematical
model of the relationship is the regression equation.
Linear regression is a regression method that explores
a linear relationship between the dependant variable Y
and the k independent variables xi (allowing an error
term ε). That is, the form of the model (the regression
equation) is Y = α + β1x1 + β2x2 + . . . + βkxk + ε.

1 Attr 2 Attr 3 Attr 4 Attr 5 Attr 6 Attr 7 Attr 8 Attr 9

Alice knows Attr1−Attr4 Bob knows Attr5−Attr9

Recordi Attr

Figure 1: Vertically partitioned data, Alice knows 4
attributes while Bob knows 5.

Linear regression is the most studied regression
approach. The coefficients α = β0 and βi are the
parameters learned from the data.

In this paper, we study collaboration between sev-
eral parties that wish to compute a regression equa-
tion using their collective data. However, each wants
the others to find as little as possible of their own pri-
vate data. We focus on vertically partitioned data (see
Fig. 2). Every record in the database is an attribute-
value vector1. One part of that vector is owned by
Alice and the other part by Bob. In the case of more
than two parties, every party will own some part (a
number of attributes) from the attribute-value vector.
Note that, for vertically partitioned data, the more par-
ties are involved, the more attributes are involved and
the higher the dimensions of the attribute-vectors. A
direct use of regression algorithms on the union of the
data requires one party to receive data (collect all at-
tributes for all records) from all other parties, or all

1 For most data analysis and data mining algorithms, the data
is encoded as vectors in high dimensional space. Attribute-vectors
are the common input for learning algorithms like decision trees,
artificial neural network or for clustering algorithms like k-Means
or DBSCAN.

parties to send their data to a trusted central place.
The recipient of the data would conduct the compu-
tation in the resulting union. Although there has been
some work on privacy preserving integration [9, 5], in
settings where each party must keep their data private,
this is usually unsatisfactory.

Also, for simplicity, we identify each predictor
variable xi with one party (so the dimension k of
the records is also the number m of parties). Typi-
cally there will be less parties than dimensions (as in
Fig. 2 where two parties have data for 9-dimensional
records). However, we consider Alice as 4 virtual par-
ties (one for each of the columns) and Bob as 5 virtual
parties each controlling one of Bob’s column. This
simplifies the notation in the algorithms (and commu-
nication between two virtual parties of the same party
just does not need to occur). It also may be the case
that a predictor variable xi is in fact a function of sev-
eral attributes owned by one party; however, this again
is a matter internal to that party and we will not ad-
dress it further.

In order to have privacy-preserving liner regres-
sion one must perform several steps which includes
secure calculation of the regression coefficients βi and
model diagnostics. The calculation of the regression
coefficients is an important step in regression but the
diagnostics and model selection are even more impor-
tant and challenging. Diagnostics checks whether a
model is proper and the best possible or it needs re-
vision by further analysis. This can be carried out by
graphical tools that include plotting the residual ver-
sus the predicted response and/or residual versus pre-
dictor plots. Model selection can be performed itera-
tively, controlled by the analyst based on diagnostics
analysis, or an automatically by stepwise regression,
or exhaustively, that is, running over all possible mod-
els relying on some model selection criteria such as
Mallow’s Cp statistic.

The first solution for linear regression in the pri-
vacy context [3] was based on a series of protocols
for matrix multiplication that were secure in a weak
sense [15]. Other solutions addressed the simpler
case of horizontally partitioned data [9]. Using Pow-
ell’s algorithm for solving quadratic minimization an
alternative was provided for the vertical partitioning
case [12]. All of these assume that the response vari-
able Y is known to all the parties. This reduces the
cases where two different parties may attempt to un-
derstand the relationship between attributes in their
data by means of linear regression. Specially, if there
is no commonly known attribute that can act as the
commonly known response. For example, one com-
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pany may hold salary and education level for a large
set of employees, while the medical insurer may hold
data about the frequency of medical checkups. It
would be difficult to explore the relationship between
education level and the monitoring individuals per-
form on their health. Similarly, the potential relation-
ships between types of treatment and professional ac-
tivity (that could lead to patterns in some certain con-
ditions due to the nature of the job). Similarly, if there
was a third party, say a retailer, then it may be inter-
esting to explore the types of expenses in relation to
salary. This may enable the retailer to target its adver-
tising, and the employer to offer some employment
benefits according to some rank within the organiza-
tion.

Although the previous solutions [3, 12] provide
privacy preserving calculation of regression coeffi-
cients for two parties holding more that one at-
tribute, Vaidya and Clifton have remarked [15] on a
potential privacy breach of the attribute values when
using the residual versus predictor plots to determine
whether the fitted model is proper. For example, Alice
can generate the residual versus x1 plot. In the plot,
the coordinates of the points are exactly the values of
x1. If the plot is revealed to the other party (Bob),
Bob may use the plot to recover accurate values of x1

which are held by Alice. We will show that this situa-
tion can be avoided if Alice and Bob distribute resid-
uals in shares and apply secure multi-party protocols
for diagnosis analysis. But none of the solutions in the
literature provide coefficients as well as residuals with
shares.

Another privacy risk that was highlighted previ-
ously [15], is the case of only two parties each holding
only one attribute. In this scenario, the disclosure of
the residuals immediately results in the disclosure of
the attribute values of the opposite party. We will also
provide the first solution to this case.

3 Privacy-Preserving Computation
We present several tools for privacy preserving com-
putation. These tools were originally developed un-
der the name of “secure multi-party computation”
(SMC) [6]. Here Alice holds one input vector ~x and
Bob holds an input vector ~y. They both want to com-
pute a function f(~x, ~y) without each other learning
anything about each other’s input expect what can
be inferred from f(~x, ~y). Yao’s Millionaires Prob-
lem [16] provides the origin of SMC. In the Million-
aires Problem, Alice holds a number a while Bob

holds b. They want to identify who holds the larger
value (they compute if a > b) without neither learn-
ing anything else about the others value. The function
f(x, y) is the predicate f(x, y) = (x > y).

It is common to use a SMC-protocol as a sub-
protocol of another that performs a more elaborate
computation. In this case, it is not satisfactory for
the parties to learn the output of the sub-protocol as
this may lead to learning information about the inputs
for the overall process. We are interested in cover-
ing the output of some particular SMC sub-protocol,
and this is usually achieved by distributing the inter-
mediate result among the parties in what is called se-
cret shares. For example, we may be interested in
finding the largest value among several parties. Us-
ing Yao’s comparison protocol, we could compute
which of two numbers are grater and use this infor-
mation in the maximum-finding protocol. However, if
the output of every comparison becomes public, then
the parties would learn information beyond the max-
imum value, perhaps even which party holds the sec-
ond largest value. It is much better to keep the results
of individual comparisons as shares which on a second
phase are summed up and find the maximum without
any party learning the outcome of any comparison [1].

The origins of secure multi-party computation
were in fact presented with the idea of each party
receiving shares of the output, and this idea lead to
a theoretical result that any function f with polyno-
mial complexity could be described as a digital cir-
cuit of polynomial size where the parties could each
be assigned shares of each logical gate. This theoret-
ical result implies that any polynomial algorithm can
be adapted for privacy preservation, under the semi-
honest model of computation 2. However, this result
is theoretical. We rarely can describe an algorithm,
like matrix multiplication, as a large digital circuit,
and such polynomial size circuit would be extremely
large for the size of databases we have in mind in data
analysis or data mining, and in particular for multiple
regression.

One advantage of the “secret shares” theoreti-
cal result is that one can easily decompose the result
f(~x, ~y) into a share sA for Alice and a share sB for
Bob, so that sA + sB = f(~x, ~y), and use this as a sub-
protocol in another more elaborate protocol, while
neither party can find f(~x, ~y) from their share. This

2Secure multi-party computation under the semi-honest
model [6] means all parties will follow the protocol since all are
interested in the results. However, all parties can use all the in-
formation collected during the protocol to attempt to discover the
private data or some private values from another party.
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usage of a protocol as a subroutine in another protocol
enables construction of more complex and secure pro-
tocols, but transmits the impracticality of the generic
“shares” further. We believe this has been somewhat
over-used in the privacy preserving literature. There
are several algorithms [7, 13, 14] that invoke a subrou-
tine for Yao’s comparison with shares, and all of them
rely on the circuit evaluation generic “shares” theoret-
ical solution by Goldreich [6]. Hence, they seem hard
for implementation.

To produce algorithms for multiple regression, we
will require some other secure multi-party computa-
tion sub-protocols, some of which are already in the
literature and some we present here. We introduce a
protocol to compute a division, when the parties them-
selves have shares of the divisor and the dividend. The
result will be shared. The current SMC division pro-
tocol [2], does not provide an answer with shares, it
gives an answer to one party only.

In the division protocol, Alice holds (a1, a2) and
Bob holds (b1, b2), the goal is for Alice to obtain a
value A and for Bob to receive a value B, where A +
B = (a1+b1)/(a2+b2). Thus, they share the outcome
and also, Alice does not learn any of the values hold
by Bob, while Bob does not discover any of the values
hold by Alice. The steps of the protocol are as follows.

1. Alice produces a random number r1 and Bob
produces a random number r2.

2. Using the scalar product protocol [4] 3, but pro-
viding an answer to one party only, Alice can ob-

tain r2(a2 + b2) = (a2, 1)T ·
„

r2

r2b2

«
, where Al-

ice supplies (a2, 1)T and Bob supplies r2

„
1
b2

«

. Similarly, using the same protocol, but now
in a way that only Bob learns the answer, and

with inputs r1

„
1
a2

«
for Alice and (b2, 1)T for

Bob, we allow Bob to get r1(a2 + b2) = (b2, 1)T ·„
r1

r1a2

«
.

3. Alice and Bob again perform the scalar prod-
uct [4], but a variant that provides an answer with
shares. The inputs will be

“
r1a1,

1
r2(a2+b2)

”T

for

Alice and
0
@

1

r1(a2 + b2)
r2b1

1
A for Bob. Thus Alice

3Here Bob sets his private share V2 equal to 0. As authors of
this protocol have remarked in the original paper [4] (page 6), this
does not let Alice to learn any of Bob’s private data.

would obtain a value A and Bob would obtain a
value B with the property that

A + B =

„
r1a1,

1

r2(a2 + b2)

«T

·
0
@

1

r1(a2 + b2)
r2b1

1
A

=
a1 + b1

a2 + b2
.

4 Privacy-Preserving Bivariate Lin-
ear Regression

Bivariate linear regression models the response vari-
able Y as a linear function of just one predictor vari-
able X; that is Y = α + βX + ε, where α and β are
regression coefficients specifying the Y -intercept and
slope of the line, respectively. These coefficients can
be found by minimization of the error ε between the
actual data and the estimate of the line. Given n sam-
ple data points of the form (a1, b1), · · · , (an, bn), then
the regression coefficients estimated by the method of
least squares are

β =

Pn
i=1(ai − ā)(bi − b̄)Pn

i=1(ai − ā)2
(1) and α = b̄− βā (2)

where ā is the average of a1, · · · , an and b̄ is the av-
erage of b1, · · · , bn.

When data is vertically partitioned, Alice would
know all a1, · · · , an and Bob will have b1, · · · , bn.
Thus, Alice and Bob can calculate each ā and b̄ with-
out any communication. The goal would be for Alice
and Bob to obtain the coefficients for Y = α + βX ,
while they do not learn each other’s data points. Note,
however, that knowledge of β and α by Alice and Bob
implies (because α = b̄ − βā, that each will learn
something about each other’s data. Alice will discover
b̄ and Bob ā. It is commonly accepted in secure multi-
party computation that anything that can be learned
from the output f(~x, ~y), about the others party data is
acceptable. We will present this situation first. The
alternative, is that the output f(~x, ~y) is in shares. We
present this case second.

In order for the parties to find β, we provide the
following protocol. First note that the dividend in
Eq. (1) is a scalar product of two vectors, each know
to one party only.

nX
i=1

(ai − ā)(bi − b̄) =

`
(a1 − ā), · · · , (an − ā)

´T · `(b1 − b̄), · · · , (bn − b̄)
´

(3)

Using scalar product protocol [4] 4 which pro-
vides an answer to Alice only, she can then divide by

4Here again Bob sets his value V2 = 0.
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∑n
i=1(ai − ā)2 ( which she owns) and obtain β. Al-

ice would then pass β to Bob. This way Alice and
Bob learn the coefficients with a protocol that is best
possible in the sense that the protocol reveals to each
party the final result and only what can be discovered
using the final result and one’s input.

However, if the coefficients are to be learned
in shares α = sa(α) + sb(α) and β = sa(β) +
sb(β) (with sa(α), sa(β) known only to Alice and
sb(α), sb(β) known only to Bob) we need additional
care. By Eq. (2), if

β = sa(β) + sb(β),

then

α = b̄ + [sa(β) + sb(β)]ā

= b̄ + sb(β)ā + sa(β)ā

=
`
1, ā, āsa(β)

´T ·
0
@

b̄
sb(β)

1

1
A (4)

Because the first vector above is known only to Al-
ice and the second is known only to Bob, using the
scalar product protocol [4] with shares would provide
the required sa(α) for Alice and sb(α) for Bob with
α = sa(α) + sb(α). Thus, providing the coefficients
with shares reduces to providing β with shares.

We accomplish this requirement as follows. Re-
call that β is an expression (Eq. (1)) whose dividend is
a scalar product (Eq. (3)). Thus, we can obtain the div-
idend as two values A1 and B1, with A1 only known
to Alice and B1 only known to Bob. Let Alice gener-
ate a random number R, that she passes to Bob, and
consider the following derivation.

β =
A1 + B1

(
Pn

i=1(ai − ā)2 + R)−R
=

A1 + B1

A2 + B2
.

This has the form of the division protocol with A1, A2

only known to Alice, and although B1 is only known
to Bob, B2 = R is known to both Bob and Alice.
Nevertheless, we can apply the secure division proto-
col from Section 3. Knowledge of B2 = R by Alice
results in Alice learning r2, but interestingly enough,
this is still insufficient for Alice to learn b1 or Bob’s
share in the output 5. This gives then the required
shares for β.

We have provided two protocols. Firstly, Alice
and Bob learn the coefficients α and β. In the second
one, they learn these coefficients, but in shares. Both
protocols are ideal, in the sense of privacy from the
semi-honest model in SMC, as what each party learns

5Full proof of this requires description of the scalar product in
shares, this is included in an appendix for referees.

about the others data is nothing more that what can be
inferred from the specified output of the protocol and
its own data.

5 Privacy-Preserving Multiple Re-
gression

In this section we investigate multiple regression.
Here, several parties are involved with several at-
tributes and the goal is again to obtain linear regres-
sion coefficient across different attributes. We once
more do not assume a response variable in common.
In fact, this enables cases where the response variable
is an attribute known by one of the involved parties.
This provides the ability to find relationships between
different attributes of different parties. The only as-
sumption now is that there are three or more non-
virtual parties. (m ≥ 3).

Using the least squares method, the vector of co-
efficients ~β = (β1, β2, · · · , βm) is

~β = (XT X)−1XT ~Y ,

where the matrix X = ( ~X1, ~X2, · · · , ~Xm) has col-
umn vectors ~Xj and each ~Xj is owned by j − th

party. The response variable is a vector ~Y owned by
one party only. The task here is to compute β without
revealing any party’s’ data. We first present a proto-
col that reveals ~β to all parties. Let us first describe
how to compute XT X . We start with the three party
case, (m = 3). If we have n data points of the form
(ai, bi, ci) with ai known to Alice only, bi known to
Bob only and ci known to Charles only, we have the
following data matrix X given by

XT =

0
@

a1 a2 a3 . . . an

b1 b2 b3 . . . bn

c1 c2 c3 . . . cn

1
A .

Then, by using scalar product protocol [4], with out-
put distributed in shares, whenever we have an matrix
entry with data vectors belonging to two different par-
ties, we obtain the following derivation6 for the sym-

6The super-index provides the owner party.
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metric matrix XT X .

XT X =

0
B@

~aT · ~a ~aT ·~b ~aT · ~c
~bT · ~a ~bT ·~b ~bT · ~c
~cT · ~a ~cT ·~b ~cT · ~c

1
CA

=

0
@

~aT · ~a V A
ab + V B

ab V A
ac + V C

ac

V A
ab + V B

ab
~bT ·~b V B

bc + V C
bc

V A
ac + V C

ac V B
bc + V C

bc ~cT · ~c

1
A

=

0
@

~aT · ~a V A
ab V A

ac

V A
ab 0 0

V A
ac 0 0

1
A+

0
@

0 V B
ab 0

V B
ab

~bT ·~b V B
bc

0 V B
bc 0

1
A

+

0
@

0 0 V C
ac

0 0 V C
bc

V C
ac V C

bc ~cT · ~c

1
A

Thus, XT X is computed in our protocol by ma-
trix addition (also called secure sum [15]) where each
party owns one matrix. In order to add them securely,
Alice (the first party) cat generate a random matrix
and pass it to Charles (the third party) who will add
his matrix to the random matrix received from Alice.
Charles will send this sum to Bob. Next, Bob will
add his matrix to the matrix received from Charles and
send to Alice. Alice subtracts the original random ma-
trix and add her matrix to obtain XT X .

For the case m ≥ 3 (with n data points), we use
the scalar product with shares to obtain ~pT

i · ~pj as
V i

pipj + V j
pipj when ~pi, V

i
pipj is known only to the i-

th party and ~pj , V
j
pipj is known only to the j-th party,

whenever i 6= j. Thus,

XT X =

0
BBB@

p1
1 · · · p1

n

p2
1 · · · p2

n

...
. . .

...
pm
1 · · · pm

n

1
CCCA ·

0
BBB@

p1
1 · · · pm

1
p1
2 · · · pm

2
...

. . .
...

p1
n · · · pm

n

1
CCCA

=

0
BBB@

~pT
1 · ~p1 ~pT

1 · ~p2 · · · ~pT
1 · ~pm

~pT
2 ~p1 ~pT

2 · ~p2 · · · ~pT
2 · ~pm

...
...

. . .
...

~pT
m · ~p1 ~pT

m · ~p2 · · · ~pT
m · ~pm

1
CCCA =

0
BBBB@

~pT
1 · ~p1 V 1

p1p2 + V 2
p1p2 · · · V 1

p1pm + V m
p1pm

V 1
p2p1 + V 2

p2p1 ~pT
2 · ~p2 · · · V 2

p2pm + V m
p2pm

...
. . .

...
V 1

pmp1 + V m
pmp1 V 2

pmp2 + V m
pmp2 · · · ~pT

m · ~pm

1
CCCCA

=

0
BBBB@

~pT
1 · ~p1 V 1

p1p2 · · · V 1
p1pm

V 1
p2p1 0 · · · 0

.

.

.
. . .

.

.

.

V 1
pmp1 0 · · · 0

1
CCCCA

+

0
BBBB@

0 V 2
p1p2 · · · 0

V 2
p2p1 ~pT

2 · ~p2 · · · V 2
p2pm

.

.

.
. . .

.

.

.

0 V 2
p2pm · · · 0

1
CCCCA

+ · · · +

0
BBBB@

0 · · · V m
p1pm

0 · · · V m
p2pm

.

.

.
. . .

.

.

.

V m
p1pm · · · ~pT

m · ~pm

1
CCCCA

.

We apply a similar strategy in our protocol for the
computation of XT ~Y .

XT ~Y =

0
BBB@

p1
1 · · · p1

n

p2
1 · · · p2

n

...
. . .

...
pm
1 · · · pm

n

1
CCCA ·

0
BBB@

y1

y2

...
yn

1
CCCA

=

0
BBB@

~pT
1 · ~Y
0
...
0

1
CCCA+

0
BBB@

0

~pT
2 · ~Y

...
0

1
CCCA+ . . . +

0
BBB@

0

...
~pT

m · ~Y

1
CCCA .

We have that each party knows a vector and their sum
is XT ~Y . Thus, Alice generates a vector ~r with n dif-
ferent random values, passes this ~r to the last party.
Each party adds the vector given to its own vector and
passes to the previously numbered party. When the
vector is back to Alice, she subtracts ~r and adds her
vector to obtain XT ~Y . Note that Alice does not know
XT ; thus, knowledge of XT ~Y will not enable it to
derive the private values of ~Y when Alice is not the
party supplying ~Y (even knowledge of ~pT

1 and ~pT
1 · ~Y

does not reveal anything (unless n = 1, but we usually
have more than one data point). Also, if ~Y is known
by Alice and no other party, Alice cannot learn data
from another party.

Hence Alice will get XT X and XT ~Y . She can
compute ~β by inverting XT X and multiplying with
XT ~Y . In the last step of the protocol, Alice broad-
casts ~β to all parties.

We now introduce a protocol that distributes ~β in
shares to at least two parties. This protocol works as
before except that now.

1. All parties will engage in the protocol for calcu-
lating XT X and the output will go to Alice.
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2. All parties and the party holding ~Y (say Yuri)
will compute XT ~Y and the output will go to
a party different than Alice. The easiest is for
XT ~Y to go to Yuri.

3. Alice and Yuri will multiply the matrix A =
(XT X)−1 and the vector ~B = XT ~Y to obtain
shares.

Step 1 and Step 2 are essentially as before. Step 3 can
be archived again by using the scalar product proto-
col [4] that splits into shares.

A~B =

0
BBBB@

(a1
1, · · · , a1

m)T · ~B

(a2
1, · · · , a2

m)T · ~B
...

(am
1 , · · · , am

m)T · ~B

1
CCCCA

=

0
BBBB@

V 1
~a1~b

+ V 2
~a1~b

V 1
~a2~b

+ V 2
~a2~b

...
V 1

~am~b
+ V 2

~am~b

1
CCCCA

=

0
BBBB@

V 1
~a1~b

V 1
~a2~b
...

V 1
~am~b

1
CCCCA

+

0
BBBB@

V 2
~a1~b

V 2
~a2~b
...

V 2
~am~b

1
CCCCA

(5)

In this way, the output ~β will be shared between
two parties. If the fact that XT X is known to Al-
ice is of some concern [10], a variant of the proto-
col where XT X is discovered in distributed shares
can be obtained if Alice and Bob skip the last matrix
transmission in the protocol from the previous sub-
section. That is, Bob does not send his sum matrix
to Alice. Thus, Alice will hold A − R and Bob will
hold B + C + R, which will serve as shares for the
output. Similarly, rather than Yuri holding XT ~Y , the
computation of the sum by passing a vector and ac-
cumulating can be halted before the last transmission.
Then (XT X)1XT ~Y = (A1 + B1)−1(~Z1 + ~Z2) =
(A1 + B1)−1 ~Z1 + (A1 + B1)−1 ~Z2. Multiplication
and inversion of a matrix sum can be performed with
dedicated protocols [3].

6 Model diagnosis
As we mentioned earlier, the calculation of ~β is an im-
portant step in regression, but it is only the first step.
The other steps include diagnostics and model selec-
tion. Statistics reflecting the goodness of fit of a model
include the correlation coefficient R2 and the adjusted
R2. The residuals play an essential role in diagnos-
tics. Once ~β is available, we can calculate the fitted or

predicted responses as ~̂Y = X~β. The column vector

of residues is ε̂ = ~Y − ~̂Y and the residual for the i−th

data point is ε̂i = yi − ŷi. Then

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

. (6)

For simplicity, we will assume that only 3 parties are
involved. For more parties, we only need to extend the
calculation of a sum of vectors among more parties
by passing around an accumulator vector. If ~β has
been calculated to make it available to all parties (the
version without shares), then the data matrix X has
columns owned by each party and

X~β =

0
BBB@

a1 b1 c1

a2 b2 c2

...
an bn cn

1
CCCA ·

0
@

β1

β2

β3

1
A

=

0
BBB@

a1β1

a2β1

...
anβ1

1
CCCA+

0
BBB@

b1β2

b2β2

...
bnβ2

1
CCCA+

0
BBB@

c1β3

c2β3

...
cnβ3

1
CCCA . (7)

Again, this is a sum of vectors each known by one
party and can be computed by summing and passing
an accumulator initiated with random values by the
first party.

When ~β is not publicly available, that is ~β is
distributed by shares (Equation (5)), then privacy-
preserving calculation is more challenging. Here we
have

X~β =

0
BBB@

a1 b1 c1

a2 b2 c2

...
an bn cn

1
CCCA ·

0
@

β1

β2

β3

1
A

=

0
BBB@

a1 b1 c1

a2 b2 c2

...
an b3 c3

1
CCCA ·

2
64

0
B@

V 1
~p1~β

V 1
~p2~β

V 1
~p3~β

1
CA+

0
B@

V 2
~p1~β

V 2
~p2~β

V 2
~p3~β

1
CA

3
75

=

0
BBB@

a1 b1 c1

a2 b2 c2

...
an bn cn

1
CCCA ·

0
B@

V 1
~p1~β

V 1
~p2~β

V 1
~p3~β

1
CA

+

0
BBB@

a1 b1 c1

a2 b2 c2

...
an bn cn

1
CCCA ·

0
B@

V 2
~p1~β

V 2
~p2~β

V 2
~p3~β

1
CA . (8)

Hence, we need a protocol for securely computing
X ~V 1

pβ and X ~V 2
pβ where X is the vertically partitioned

matrix and ~V 1
pβ is a vector belonging to one of the par-

ties, in our case we can assume it is Alice. The X ~V 2
pβ
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belongs to Yuri, which may or may not have any val-
ues in X . If we can calculate the scalar product when
one vector is vertically partitioned and the other one
has all its entries known to one party, the computa-
tion of X~β will again reduce to a sum of vectors dis-
tributed among the parties.

We are unaware of such protocol in the literature,
so we propose here a solution based on scalar product
protocol [4] that provides an answer in shares.

Protocol for computing ~pT · ~y, where ~p =
(p1, . . . , pm), each entry pi is known to the i-th party
and the vector ~y is know to the first party 7.

1. The commodity server generates two random
vectors 8 ~Ψ and ~Π of size m, and lets ra + rb =
~ΨT · ~Π, where ra (or rb) is a randomly generated
number. Then the server sends (~Ψ, ra) to the first
party (lets call it Alice). It send rb to the second
party (say Bob). It also sends ~Πi to the i-th party.

2. Alice computes a perturbed version ~̂y = ~y + ~Ψ
of its vector and sends the i-th entry to the i-th
party. Each party computes piŷi = piyi + pi

~Ψi.
That is, the i-th party gets pi(yi + ~Ψi).

3. Each of the parties perturbs its value with the ran-
dom number provided by the commodity server
p̂i = pi + ~Πi and sends it to Alice. Thus, Alice
obtains the vector ~p + ~Π.

4. The parties engage in a circular accumulator
sum, by which the first party passes p1y1 +p1

~Ψ1

to the m-th party. The i-th party adds piyi +pi
~Ψi

to the sum and passes it to the (i−1)-th party un-
til the second party (Bob) has ~pT · ~y + ~pT · ~Ψ.

5. Bob generates a random number V2, and com-
putes ~pT · ~̂y + (rb − V2). He sends this result to
Alice.

6. Alice adds ra − ~ΨT · (~p + ~Π) to the value from
Bob and calls it V1. This is V1 = ra − ~ΨT · (~p +
~Π) + ~pT · ~̂y + (rb − V2) = ra + rb − ~ΨT · ~Π −
~ΨT · ~p + ~pT · (~y + ~Ψ)− V2 = ~pT · ~y − V2.

This protocol produces distributed shares V1 for Alice
and V2 for Bob. The shares appear random to each but
V1 + V2 = ~pT · ~y.

7The case where the owner of ~y is not an owner of an entry pi

can be handled by this same protocol, but has even more relaxed
privacy settings.

8All entries are random numbers.

Thus, using this later scalar product protocol for
the scalar product calculations in Equation (8), then
every party will get its shares and

~̂Y = Xβ =

0
B@

a1 b1 c1

...
an bn cn

1
CA ·

0
@

β1

β2

β3

1
A

=

0
B@

V 1
1

...
V 1

n

1
CA+

0
B@

V 2
1

...
V 2

n

1
CA

+

0
B@

V 3
1

...
V 3

n

1
CA+

0
B@

V 4
1

...
V 4

n

1
CA . (9)

It is clear now that using a secure accumulator sum
protocol we can obtain the column vector of residues

ε̂ = ~Y − ~̂Y . Using this, the coefficient R2 can also be
computed by the parties without none revealing their
data.

7 Conclusion
We have presented practical algorithms for perform-
ing privacy preserving regression in the more sensi-
tive case, namely, where the response variable is pri-
vate. Naturally, our methods apply as well when the
response variable is public. Moreover, we have re-
solved both, the case where we have two parties and
the general case of more than two parties. Most im-
portantly, we have addressed the second phase of the
regression task, the model valuation phase. This last
point is very important, as a poor model fit may in-
dicate the need to repeat the first phase. Preserving
privacy while performing both phases several times is
crucial for the overall success of the regression task. If
there were information leaks in either phase, iteration
of the phases would increase the lack of privacy.

Privacy has a cost trade-off. Our algorithms are
efficient because they offer only a constant overhead
and are linear in the number of parties. The secure
scalar product performs 4n computations rather than
n for two vectors of dimension n. All our protocols
are based on the same number of scalar product op-
erations and occasionally an accumulator sum. This
results in an overall complexity of O(4mC(n)) where
C(n) is the complexity on a consolidated database.
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