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Abstract: - In this paper we propose a new observations selection technique in Vector Quantization context. The 
main idea is to select observations that are not representatives of their classes. The cells generated by the Vector 
Quantization are divided in regions of rejection. A number of controlled experiments were performed 
demonstrating the proposed methodology potentiality. 
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1 Introduction 
In this paper we are concerned with observations 
selection. To use the entire available set of 
observations may not always be the best strategy. In 
many situations, it is interesting to select a subset of 
the sample. This selection may produce a set of 
observations that are more representative of their 
classes and consequently improve the performance in 
classification problems. In a quite different 
perspective, observations selection could be also 
associated to outliers identification. 
     There are a number of previous contributions in 
the literature concerning observations selection under 
a variety of approaches: Active Learning [14], [5] 
demands a previous specification of the model and 
parameters. So, the associated observations selection 
is dependent on the quality of this specification [9]. 
The method proposed in [7] groups the observations 
in three categories: typical, critical and noisy by 
considering the intrinsic margin, a measure of the 
distance between observation and the decision 
boundary. A method to identify outliers, based on 
exhaustive learning can be found in [10]. [9] focused 
on observations selection from a Bayesian 
perspective. Other strategies are query-based learning 
[6] and sequential design [2]. [12] propose the risk-
zone concept in a Learning Vector Quantization 
(LVQ) context. The key idea is to select a subset of 
observations with the goal of conducting the 
prototypes to convenient locations other than the 
class mean. This methodology was successfully 
applied in a heart diseases diagnosis problem [11]. 
Also, in a Vector Quantization (VQ) context, [13] 
proposed a method where a discriminating mapping 
is applied to select observations after projecting them 
in a bi-dimensional space. 

     Here, we propose an observations selection 
methodology in a supervised environment. The main 
goal is to identify, and possibly exclude, observations 
that are considered to be unrepresentative of their 
classes. 
 
2   Methodology 
Let us consider a dichotomous classification 
environment where X = {x1, x2, ..., xn} is a set of 
observations  (each xi ∈ Rp, ∀i = 1,...,n). We assume 
that each observation xi belongs to one of two classes 
C1 and C2, with associated labels 0 or 1 respectively. 
The methodology that follows can be extended to 
multiple classes problems in the usual manner [1]. 
The objective is two fold: to identify observations 
that are not representatives of their classes or that 
have had their labels inverted by some noise 
mechanism. 
     Let us denote y(xi) as the label of observation xi, 
i.e., y(xi) = 0 if xi belongs to C1, and y(xi) = 1 if xi 
belongs to C2. It is assumed that the assigned labels, 
in the dataset, may eventually not correspond to the 
true label due to action of a noise mechanism. 
Because of that we define ℑ(xi) as the true label 
associated to the observation xi. The concept of 
inversion of label can be now established as follows: 
An observation xi has had its label noisily inverted if 
y(xi) ≠ ℑ(xi). 
     Vector Quantization (VQ) [4], [3], that has been 
extensively explored in literature, is used here as a 
first step. The main idea is to establish a quantized 
approximation of the data distribution, using a finite 
number of prototypes. These prototypes may be 
associated with the observations by the nearest 
neighbor rule. 
     Let P = {p1, ... , pr}, pk ∈ Rp, ∀k = 1, ..., r be a set 
of prototypes. A VQ procedure can be defined as an 
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association of each observation xi ∈ X to a prototype 
pk. In general, this association is done by linking the 
observations to their nearest prototype according to 
some specific metric. In this paper we use the 
Euclidian distance, but other metrics may be more 
convenient to some specific applications and methods 
e.g. [12]. As a result of the quantization procedure, 
the set of observations X ends up partitioned in 
subsets that we call cells. These cells are denoted by 
S1,..., Sr. Formally: 
 
Sk ≡ { xi ∈ X | d(xi, pk) ≤ d(xi, pj), j=1,...,r; j≠k },∀k = 
1,..., r. 
 
     Here, we use the LBG algorithm [8] for 
quantization step, with the goal of segmenting the 
sample in cells. These cells will be individually 
treated in next sections. The LBG is an unsupervised 
procedure, and so, it is possible that some cells end 
up constituted by a heterogeneous population 
concerning the labels of the observations. The LBG 
algorithm is initiated with 2 prototypes, generating 
two cells. Next, these prototypes are repeatedly 
updated to the center of the cells until the average 
distortion variation lays below a threshold ς. After 
that, each prototype pk is substituted by pk + λ and pk 
- λ (where λ is a small valued parameter). This 
procedure is repeated until a maximum pre-
established number of prototypes are reached. 
     For each cell Sk, generated by the VQ step, we 
define the following two sets:  Wk ≡ {x ∈ Sk | y(x) = 
0} and Tk ≡ {x ∈ Sk  | y(x) = 1}, and determine the 
correspondent frequencies of classes C1 and C2:  
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where #A represents the cardinality of a set A. Since 
we are interested in non-representative observations, 
we restrain our attention to the heterogeneous cells. 
Note that Wk = ∅ ⇒ f0(k) = 0 and Tk = ∅ ⇒ f1(k) = 
0. In these cases the cell is fully homogeneous and 
consequently skipped.  

Given a cell Sk, we denote its highest frequency as 
f_max ≡ ))(),((maxarg 101,0

kfkf . 

     Let us consider the means of each class in a cell 
Sk: 

∑
∈

=
kWxk

x
W

km
#

1)(0
   and     ∑

∈

=
kTxk

x
T

km
#
1)(1

 

Definition 1: We say that an observation x ∈ Sk 
belongs to the rejection region of class C1, namely 
R0(k), if   
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Analogously, an observation x ∈ Sk belongs to the 
rejection region of class C2, R1(k), if  
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The thresholds are defined as Ω1 ≡ 
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C1 and C2 are defined as  
R0(k) ≡ {x ∈ Sk   | 
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     Note that, unless in the improbable case of 
equality, R0(k) and R1(k) are complementary regions, 
and so, they represent a partition of Sk. 
Definition 2: An observation x ∈ Sk is selected if: (i) 
x ∈ R0(k) ∧ y(x) = 0; (ii) x ∈ R1(k) ∧ y(x) = 1. 
     If Wk or Tk are unitary, the unique observation is 
automatically selected, i.e., if #Wk = 1, R0(k)={x1} or 
if #Tk = 1, R1(k)={x1}, the observation x1 is selected . 
     Note that if Ω1 = Ω2 = 1, the procedure selects the 
observations that are near the other class mean, since 
R0(k) ≡ {x ∈ Sk   | ))(,( 0 kmxd  > ))(,( 1 kmxd } and R1(k) 
≡ {x ∈ Sk   | ))(,( 1 kmxd  > ))(,( 0 kmxd }. The process 
described is repeated for all cells Sk, k = 1,..,r. 
     The key idea is to select observations for which 
the rate of the distances between the observation to 
the mean of its class and to the mean of the other 
class to exceed a, frequency-based, threshold value 
(Ω1 or Ω2, depending of the label of the observation). 
In this way, the sizes of the rejection regions vary in 
accordance to the measured frequency of each class 
in a given cell. 
     The observations that belong to the rejection 
regions R0(k) or R1(k) are selected as 
unrepresentative of their classes. These observations 
may have been generated by some sort of noise 
mechanism resulting in label inversion. Taken the 
rate of frequencies in a given cell, the selected 
observations are relatively far away from the mean of 
their class (in relation to their distance to the mean of 
the other class). 
     Note that, since we are dealing with a 
dichotomous classification environment, the 
frequencies in each class are complementary. So, 
f0(k) + f1(k) = 1, ∀k = 1,…,r. Also, in a situation of 
complete equilibrium, f0(k) = f1(k) = 0.5. 
     We detach two situations of approximately 
equilibrium: observations are disorderly mixed, as in 
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Fig. 1, or in two distinct groups, as in Fig. 2 (possibly 
characterized by a cell in the boundary decision). 
First case is hopeless and we opt to select (and 
possibly discard) all the observations of this cell.  We 
distinguish these cases as follows: if f_max ≤ α and  
d(m0(k), m1(k)) < β for chosen thresholds α and β, 
the observations are disorderly mixed. 

 
Fig. 1. A cell where the classes have the 
same frequency and the observations are 
mixed. 

 

 
Fig. 2. A cell where the classes have the 
same frequency but observations are divided 
in two groups. 

 
3 Results 
     The following parameters were used for all 
experiments: thresholds α = 0.6 and    β = 0.5;  λ = 
10-1 and  ς = 10-2 (LBG algorithm). 
 
Experiment 1: We built up a dataset consisting of two 
classes divided by a cosine function (2070 and 2053 
observations for classes C1 and C2 respectively). For 
each class, 20 observations had their label 
deliberately inverted (nearly 1% of the observations), 
i.e. for these observations, y(xi) ≠ ℑ(xi). These 
inverted label observations were uniformly 
distributed. In Fig. 3, we represent C1 and C2 
observations with asterisks. The inverted label 
observations are marked as circles. Results are shown 
in table 1. By erroneously selected observations, we 
mean observations that are not inverted labels ones 
but were mistakenly selected as so. 
 
 
 

Table 1. Performance (Experiment 1). 
 
Classes Identified 

Inverted 
Labels  

Erroneously 
Selected 

Observation 
C1 19 out of 20 

(95%) 
37 

C2 18 out of 20 
(90%) 

41 

Total 37 out of 40 
(92.5%) 

78 out of 4083 
(1.9%) 

 

Fig. 3. Experiment 1 - C1 and C2 as asterisks 
and observations with label inverted as 
circles. 

 
Experiment 2:  The dataset is generated by a circle 
and a roll with the same centers and no intersection 
(123 observations belonging to C1 and 2611 
observations to C2), see Fig. 4. The labels of 5 
observations inverted in C1 and of 20 observations in 
C2. Results are presented in table 2. 
 

Table 2. Performance (Experiment 2). 
 
Classes Identified 

Inverted 
Labels  

Erroneously 
Selected 

Observation 
C1 4  out of 5 

(80%) 
28 

C2 20 out of 20  
(100%) 

11 

Total 24 out of 25 
(96%) 

39 out of 2734 
(1.4%) 

 

 
Fig. 4. Experiment 2 - C1 and C2 as asterisks 
and observations with label inverted as 
circles. 
 

Experiment 3: This dataset was built up with two 
classes (1000 observations belonging to C1 and 1000 
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observations to C2), uniformly distributed, as squares 
with 25% of the area in common and we introduced 
20 observations with inverted labels for each class 
(Fig. 5a). Results are in table 3. The method selected 
475 observations (246 from C1 and 229 from C2) with 
the majority of the central square plus the 40 inverted 
label ones. These observations were removed in Fig. 
5b. 
 

Table 3. Performance - Experiment 3 
 Inverted Labels Detected 

C1 20  out of 20 (100%) 
C2 20 out of 20  (100%) 

Total 40 out of 40 (100%) 
 

 
Fig. 5a. Experiment 3 - C1 and C2 as 
asterisks, observations with label inverted as 
circles and the uniform area in the center. 

 

 
Fig. 5b. Experiment 3 without observations 
selected by the method. 

 
 
4   Conclusion 
In this paper we described a new methodology for 
data selection. After an unsupervised step, (VQ), the 
procedure is used to identify observations that are not 
representative of their classes. Each heterogeneous 
cell obtained by the quantization is divided in regions 
of rejection for each class. Observations that belong 
to the rejection region of its class are selected by the 
method. The potentiality of the proposed 
methodology was positively evaluated through three 
synthetically experiments. The methodology was 
clearly efficient in terms of recognizing observations 
with inversion of label. 
 

References: 
[1] Duda, R.O., Hart, P.E., Stork, G, Pattern 
Recognition, 2nd. Ed., Wiley, US, 2001. 
[2] Faraway, J.J., Sequential design for the 
nonparametric regression of curves and surfaces, 
Proceedings of the 22nd Symposium on the Interface 
between Computing Science and Statistics, Springer, 
1990, pp. 104-110. 
[3] Gersho, A., Gray, R.M., Vector Quantization and 
Signal Compression, Kluwer Academic 
Press/Springer, US, 1992. 
[4] Gray, R. M., Vector quantization, IEEE ASSP 
Magazine, Vol. 1, Issue 2, 1984, pp. 4-29. 
[5] Hasenjäger, M., Ritter, H., Obermayer, K., Active 
learning in self-organizing maps, In E.Oja & S. Kaski 
editors, Kohonen Maps, Elsevier, 1999, pp. 57-70. 
[6] Hwang, J. N., Choi, J. J., Oh, S., Marks II, R. J., 
Query-based learning applied to partially trained 
multi-layer perceptrons, IEEE Trans. Neural 
Networks, Vol.2, Issue 1, 1991, pp. 131-136. 
[7] Li, L., Pratap, A., Lin, H.-T., Abu-Mostafa, Y. S., 
Improving generalization by data categorization, 
PKDD, LNAI 3721, Springer-Verlag, 2005, pp. 157-
168. 
[8] Linde, Y., Buzo, A., Gray, R. M., An algorithm 
for vector quantizer design, IEEE Trans. 
Communications, Vol. COM-28, Issue 1, 1980, pp. 
84-95. 
[9] MacKay D. J. C., Information-based objective 
functions for active data selection, Neural 
Computation, Vol. 4, Issue 4, 1992, pp. 590-604. 
[10] Nicholson, A., Generalization error estimates 
and training data valuation, Ph.D. Dissertation, 
California Institute of Technology, US, 2002. 
[11] Pedreira, C. E., Macrini, L. Costa, E. S, Input 
and data selection applied to heart disease diagnosis, 
Proc. IEEE-INNS-ENNS International Joint 
Conference on Neural Networks, Montreal, 2005. 
[12] Pedreira, C. E., Learning vector quantization 
with training data selection, IEEE Trans. Pattern 
Analysis and Machine Intelligence, Vol. 28, Issue 1, 
2006, pp. 157-162. 
[13] Peres, R. T., Pedreira, C.E., Preliminary Results 
on Noise Detection and Data Selection for Vector 
Quantization, Proceedings of IEEE World Congress 
on Computational Intelligence, Vancouver, 2006. 
[14] Plutowski, M., White, H., Selecting concise 
training sets from clean data, IEEE Trans. Neural 
Networks, Vol. 4, Issue 2, 1993, pp. 305-318. 
 

Acknowledgment: This work has been partially 
supported by grants from the CNPq- Brazilian 
National Research Council and FAPERJ – Rio de 
Janeiro Research Foundation, Brazil.  
 

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007      452


