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Abstract: - A new real-coded multi-objective estimation of distribution algorithm (RCMEDA) for optimization 
problems with continuous variables is developed. Decision tree is used for discretization to encode conditional 
dependencies among variables in RCMEDA, i.e. decision-tree-based probabilistic model is used. By building 
and sampling the probabilistic models, the algorithm reproduces the genetic information of the next generation. 
Incorporating this reproduction mechanism together with the ranking method and the truncated selection, 
RCMEDA can approximate the Pareto front. And polynomial mutation operator is used in order to enhance 
exploration and maintain diversities in the populations. Furthermore, RCMEDA adopts a procedure to eliminate 
a solution with smallest crowding distance at a time in the truncated selection, so that it can obtain a well spread 
solution set. The performance of the proposed algorithm is evaluated on four test problems and metrics from 
literature. Simulation results show that the proposed approach is competitive with NSGA-II and RCMEDA is a 
general and effective method for multi-objective optimization. 
 
Key-Words: - Real-coded multi-objective estimation of distribution algorithm, decision tree, probabilistic model, 
truncated selection, polynomial mutation operator, multi-objective optimization 
 
1   Introduction 
The estimation of distribution algorithms (EDAs) 
[1,2,3] have attracted an increasing attention over 
recently years. EDAs adopt probabilistic models of 
underlying problem structure and sampling 
techniques to reproduce offspring, instead of 
recombination and mutation operators used in 
standard evolutionary algorithms. By probabilistic 
model building and sampling, it is able to avoid the 
disruption of important building blocks and to solve 
non-linear or even deceptive problems with a 
considerable degree of epistasis [4]. Furthermore, the 
prior information about the problem can be 
incorporated into these probabilistic models to guide 
and accelerate the optimization process, but it is not 
essential. 
     Many EDAs have been proposed to address 
discrete and continuous multi-objective optimization 
problems [4,5,6,7,8]. For continuous variables, the 
naive MIDEA [8] uses clustering techniques to 
divide the promising solutions into linear clusters and 
for each cluster one Gaussian network is used. But 
clustering does not allow proper mixing of building 
blocks between clusters [9]. Očenášek presented 
AMBOA in which decision trees are used to 
discretize continuous variables, i.e. decision-tree- 
based probabilistic model is used to encode 

conditional dependencies among continuous 
variables for single objective optimization [10]. And 
the lack for mixing of building blocks is overcome. 
AMBOA performs comparably to an effective 
optimization algorithm CMA-ES [12]. Therefore we 
extend AMBOA and suggest a real-coded multi- 
objective estimation of distribution algorithm.  
     The rest of the paper is organized as follows. In 
section 2, we discuss Bayesian optimization 
algorithm with decision tree. In Section3, the 
proposed real-coded estimation of distribution 
algorithm is presented in detail. Section 4 
demonstrates the applicability of this approach on 
four test problems and compares the results to 
NSGA-II [13]. Finally, the paper is concluded with 
the remarks in section 5. 
 
 
2   Bayesian Optimization Algorithm 
The Bayesian optimization algorithm (BOA) uses 
Bayesian networks (BNs) to model promising 
solutions, and then samples new solutions from them. 
Bayesian network is a general probabilistic model for 
discrete variables. It is able to encode any 
dependencies among a finite set of variables. BN is 
often denoted as ),( θSB = , where S is the 
structure part and θ  the parameters for S . The 
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structure S  is a directed acyclic graph (DAG) that 
represents a set of conditional dependencies. Each 
node in S  corresponds to a variable. A variable is 
denoted as upper letter, such as 1X . And its value is 
denoted as lower upper, such as 1x . In ),( θSB = , 
θ  is a finite set of parameters for the local 
conditional probabilities with S .  
 
 
2.1 BOA with Decision Tree Models 
BN is suitable for discrete variables. For 
continuous domains, decision tree (DT) can be 
used for discretization to encode the conditional 
dependencies. For each variable iX , a decision 
tree is built. In DT for iX , the split nodes cut the 
domain of the parent variables )( iXPa  into 
parts, where the variable iX  and other variables 
seem to be mutually independent. And on each 
leaf, iX  follows Gaussian kernel distributions. 
Thus, this decomposition is captured globally by 
the Bayesian network model with decision trees 
and the Gaussian kernel distributions are used 
locally to approximate the values in each leaf 
node. The following is an illustrative of DT for a 
continuous variable 1X , where 652 ,, XXX  are 
parents of 1X  and )( 1Xf follows Gaussian 
kernel distribution.  

 
Fig.1 An example of DT for continuous variable 

 
 
2.2   DT Metric  
A scoring metric is a measure of how well a 
probabilistic model models the promising solutions. 
To measure the quality of probabilistic model with 
decision trees, a Bayesian scoring metric, calling DT 
metric, is derived from the well-known Bayesian 
-Dirichlet metric by Očenášek [11]. It is 
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Where, jX  is a splitting node of iX , 

),( ji xxm denotes the number of solutions in each 
splitting leaf and Γ stands for the Gamma function. 
With this scoring metric, a DT grows by splitting its 
leaves. A leaf is not split further if the logarithm of its 
metric is not greater than zero. 
     As a result of model building, a set of decision 
trees is obtained. The conditional dependencies 
between variables are acyclic, so there is a 
topological order of these variables. According the 
topological order, probabilistic logic sampling [11] 
can be used to generate the values for the variables. 

 
 

3 Real-Coded Multi-objective Esti 
-mation of Distribution Algorithm 

The above-motioned decision tree is used for 
discretization and the decision-tree-based 
probabilistic model is used to encode conditional 
dependencies among variables in RCMEDA. The 
solutions selected to build such models are based on 
the fitness that is a combination of the rank and 
crowding distance of each solution. There are two 
ways for the combination. One is to add the crowding 
distance to the rank the other is a hierarchical way. In 
fact, the rank and the crowding distance are two 
different traits for a solution, so the addition will blur 
the concept and leads to inaccurate result. As for the 
hierarchical way, the comparison is based on rank 
first. If a tie occurs, it will be broken by considering 
the crowding distance. The one with greater 
crowding distance wins. Here, the hierarchical way is 
used. 
     Along with non-dominated sorting and crowding 
distance estimation, truncated selection is performed 
based on the fitness. After the proper number of 
solutions is chosen, those solutions are used to 
construct a probabilistic model in which a decision 
tree is built for each variable. And a Gaussian kernel 
model is used to capture the local distribution of each 
tree leaf. Offspring are sampled from these models by 
probabilistic logic sampling. In addition, polynomial 
mutation is performed on the new solutions because 
of the exploratory capability it could give to the 
algorithm. In order to overcome the deficiency in 
adapting the variance of the search distribution, a 
variance adaptation mechanism is used in RCMEDA. 
For multi-objective optimization problems with 
constraints, constrained-dominanceP

 
P[13]P

 
Pis adopted as 
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constraint handling approach in the process of 
ranking.  
 
 
3.1   Non-dominated sorting and truncated 

selection 
The fast non-dominated sorting approach, crowding 
distance estimation and truncated selection are 
incorporated in RCMEDA to pick out a set of best 
solutions. We assign rank 1 to solutions in the first 
front, rank 2 to those in the second front, and so on. 
The lower front a solution belongs to, the better it is. 
After identifying all the non-dominated solutions 
(those in the first front) in the population, they are 
copied to a mating pool. And crowding distance of 
each solution in the mating pool is estimated in 
objective space. Then the truncated selection is done 
based on crowding distances of solutions. 
     In case of non-dominated solutions exceeds the 
population size, some solutions with the smaller 
values of crowding distance are removed. In this 
context, only the most crowded solution is removed. 
This process continues until the number of left 
solutions is equal to the population size. Note that the 
crowding distance of the adjoining solutions should 
be re-estimated each time a solution is left out. For 
simplicity it can be re-estimated for all the remained 
solutions of this rank in the mating pool in the 
implementation. 
     If the number of non-dominated solutions is less 
than the population size, it is necessary to pick up all 
the dominated solutions in the second front. And they 
are copied to the mating pool. If it is not enough yet, 
those in the following front (the third front) are 
identified and added to the mating pool, too. This 
procedure is repeated until the number of solutions in 
mating pool is not less than the population size. Then 
the above elimination procedure is performed on the 
dominated solutions on the highest front in the 
mating pool until the appropriate number of solutions 
is left. 
 
 
3.2   Variance adaptation 
If the kernel width  of Gaussian distributions 
decreases fast, offspring will be very similar to its 
parent, which leads to hard generation of better 
solutions. To prevent variance from premature 
shrinking, an overall scaling factor, η, is used to 
control the kernel width of the marginal distributions 
adaptively. We find that the variance adaptation 
formula for single objective optimization in [10] is 
not good for multi-objective optimization problems. 
Based on experiments with multi-objective 

optimization problems, the modifications of η 
becomes 
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where N BsuccB denotes the number of new solutions 
being selected into the next generation, N BfailB 
represents the number left, t is the current generation, 
tBmaxB is the maximum generation, m.p /3.0050 +=  , 
m is the number of design variables, )/4(x samNpe=α  
and NBsam Bis B Bthe size of new solutions. Then each 
kernel width σ  is set to its product with η P

 (t+1)
P. 

 
 
3.3   Structure of RCMEDA 
The flow of RCMEDA is described as follows: 
(1) Set population size NBpopB, the promising solutions 

size NBparB, the offspring size NBsamB, mutation 
probability P BmB, the distribution index for 
mutation η BmB, the maximum iteration number t BmaxB, 
and generate the initial population P(t) randomly, 
set t=0; 

(2) Select NBpar Bpromising solutions from P(t) and 
form a set S(t) ; 

(3) Build a decision-tree-based probabilistic model 
B using S(t) by DT metric; 

(4) Sample NBsamB new solutions from B, and the new 
solutions form O(t); 

(5) Perform polynomial mutation on solutions in 
O(t) with probability P BmB; 

(6) Create a new population P(t+1) by selecting NBpopB 
solutions from the merge of P(t) and O(t) using 
ranking method and truncated selection 
described in section 3.1. And Modify the 
variance according to section 3.2, let t=t+1; 

(7) If the termination criteria are not met, go to (2). 
Note that if S(t) and P(t) have the same size, then step 
(2) is skipped and S(t) is the same as P(t). The 
algorithm was implemented in C++ and can be 
requested from the authors via email. 
 
 
4   Numerical experiments and results 
The performance of RCMEDA is compared to 
NSGA-II (real-coded) on four test problems using the 
convergence metric γ and diversity metric Δ  [13]. 
And 500 uniformly spaced solutions are chosen from 
the true Pareto front. The two algorithms are run for a 
maximum of 250 generations with a population size 
100. In NSGA-II, the crossover probability is 0.9 and 
the mutation probability is 1/n (where n is the number 
of design variables). The distribution index for 
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crossover operators is 20 and mutation operators 20. 
For RCMEDA, 100 promising solutions are selected 
as parents used to build a probabilistic model and 100 
solutions are sampled on each generation. The 
distribution index for mutation operators is the same 
as it is in NSGA-II, 20. With these parameters setting, 
the two algorithms have the same function 
evaluations after 250 generations. 
 
 
4.1   Test problems 
Four benchmark problems ZDT4, ZDT6, FON and 
OSY from [13] are used to test the performance of 
RCMEDA. These problems are 
ZDT4: 
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4.2   Simulation results and discussion 
The results are from 30 independent runs of the two 

algorithms. Each experiment starts from a randomly 
generated population. Table 1 shows the mean and 
variance of the convergence metric γ obtained by 
RCMEDA and NSGA-II on the four test problems. 
For brevity, γ(R) is used to denote this metric of the 
non-dominated sets obtained by RCMEDA and γ(N) 
denotes that of NSGA-II. And Δ (R) stands for the 
diversity metric of non-dominated sets obtained by 
RCMEDA, Δ (N) denotes that of NSGA-II. 

Table 1  Mean and variance of γ 
Convergence metric γ ZDT4 ZDT6 
γ(R) Mean 0.002013 0.019145

 Variance 0.000004 0.000069
γ(N) Mean 0.004711 0.008966

 Variance 0.000006 0.000001
 FON OSY 

γ(R) Mean 0.002108 0.454643
 Variance 0 0.032137

γ(N) Mean 0.003780 0.344955
 Variance 0 0.016811

Table 2 shows the mean and variance of the diversity 
metric Δ  obtained by RCMEDA and NSGA-II on 
the four test problems  

Table 2  Mean and variance of Δ  
Diversity metric Δ  ZDT4 ZDT6 
Δ (R) Mean 0.103513 0.191394

 Variance 0.013463 0.012254
Δ (N) Mean 0.013809 0.022902

 Variance 0.000061 0.000015
 FON OSY 

Δ (R) Mean 0.021759 0.058320
 Variance 0.000046 0.004323

Δ (N) Mean 0.007672 0.090751
 Variance 0.000025 0.003517

From table 1 and table 2, we can see that RCMEDA 
performs better on all ZDT4 and FON while 
NSGA-II shows better on ZDT6 and OSY in terms of 
convergence metric γ. With regard to diversity metric 
Δ , RCMEDA gets better spread of non-dominated 
solutions only on OSY. 
     We perform additional experiments by increasing 
the number of maximum generation to 500 with other 
parameters fixed. Table 3 and table 4 show the 
convergence and diversity metric respectively. 

Table 3  Mean and variance of γ 
Convergence metric γ ZDT4 ZDT6 
γ(R) Mean 0.001126 0.003974

 Variance 0 0 
γ(N) Mean 0.001658 0.004200

 Variance 0 0 
 FON OSY 

γ(R) Mean 0.002175 0.414480
 Variance 0 0.029617
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γ(N) Mean 0.003735 0.282066
 Variance 0 0.019050

Table 4  Mean and variance of Δ  
Diversity metric Δ  ZDT4 ZDT6 
Δ (R) Mean 0.001881 0.002076

 Variance 0.000002 0.000001
Δ (N) Mean 0.005072 0.008363

 Variance 0.000006 0.000013
 FON OSY 

Δ (R) Mean 0.015502 0.042904
 Variance 0.000014 0.002455

Δ (N) Mean 0.005014 0.070678
 Variance 0.000017 0.002632

It can be seen that RCMEDA converges better in 
ZDT4, ZDT6 and FON after 500 generations. And 
the variance in 30 runs is very small (less than 1e-6) 
except in OSY. RCMEDA gets better spread of 
non-dominated solutions on ZDT4, ZDT6 and OSY.  
The results reveal that RCMEDA converges a litter 
slower than NSGA-II. But it can approximate the true 
Pareto-optimal front very closely after some 
generations, say 500. 
     The non-dominated solutions obtained in a certain 
run on ZDT4, ZDT6 and OSY are shown in figures 2, 
3 and 4 respectively. There are axial translations for 
clarity in these three figures.  It can be seen that the 
four obtained sets are very close to the known Pareto 
front. And the two obtained by RCMEDA are more 
evenly scattered. 

 
Fig.2 Non-dominated solutions on ZDT4 

 
Fig.3  Non-dominated solutions on ZDT6 

 
Fig.4  Non-dominated solutions on OSY 

     RCMEDA needs more CPU time than NSGA-II 
because of the decision-tree-based probablistic 
model building and sampling (for the generation of 
offspring) on each generation which requests much 
more time than the simulated binary crossover in 
NSGA-II. For a single run on Pentium-4-2.66GHz 
PC with 512M memory, the time cost is given in the 
following table for ZDT4 and OSY 

Table 5  Time cost of NSGA-II and RCMEDA 
ZDT4 OSY Algorithm 250 500 250 500

NSGA-II 1.1 2.0 1.0 1.8 
RCMEDA 13.0 24.8 8.5 16.4

In the above table, 250 and 500 are the generations, 
and the other digits are the time cost in seconds.  
Although RCMEDA is more time consuming, this 
shortcoming can be negligible in engineering 
applications where the CPU time is mainly consumed 
by function evaluations. 
 
 
5   Summary and conclusions 
Here we have presented a real-coded multi-objective 
estimation of distribution algorithm for optimization 
problems with continuous variables. The algorithm 
uses decision tree for discretization and decision- 
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tree-based probabilistic model to encode conditional 
dependencies among variables. And new solutions 
are sampled from the probabilistic model on each 
generation. 
     The proposed algorithm is applied to four test 
problems. The simulation results reveal that 
RCMEDA converges a little slower and needs more 
CPU time than NSGA-II. But it can approximate the 
true Pareto-optimal front very closely and get a 
uniformly spread of non-dominated solution set. And 
these results show that the RCMEDA is competitive 
with NSGA-II. It is an effective and robust 
multi-objective optimization algorithm. 
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