
Rank-aware XML Data Model and Algebra:
Towards Unifying Exact Match and Similar Match in XML

WANG NING XU DE

Computer Science Department
Beijing Jiaotong University

School of Computer Science & Information Technology, Beijing Jiaotong University, Beijing,100044
CHINA

nwang@bjtu.edu.cn dxu@bjtu.edu.cn

Abstract: In this paper, we present rank-aware XML data model and algebra, which aims at providing a seamless
support and integration of ranked queries with precise queries. Our data model is based on ranked XML trees by
extending the semantics of XML trees to be rank-aware. A collection of ranked XML trees which can be ordered
by their ranks is modeled as a sequence, which is the basis for ranked XML operations. With ranked XML tree
model, we extend XML algebra by introducing new ranking operator and extending ordinary XML operators to
fully support top-k queries. A set of algebraic laws is also defined in this paper for rewriting and optimizing
top-k queries.

Key-Words: XML, data model, algebra, Top-k query processing, rank, query optimization

1 Introduction

Until now, the traditional Database management
system(DB), Multimedia data management system
(MDB) and Information Retrieval system(IR) have
evolved largely independently of each other. The
traditional DB, which has mostly focused on
managing highly structured data, has developed
sophisticated techniques for efficiently processing
complex and precise queries over this data. In
contrast, the IR and MDB, which have focused on
searching semi-structured and even unstructured data,
have developed various techniques for ranking query
results and evaluating their effectiveness. However,
there has been no single unified system model for
managing structured, semi-structured and
unstructured data, and processing both precise and
ranked queries [1].

In fact, recent trends in research demonstrate a
growing interest in adopting MDB and IR techniques
in DBs and vice versa [2]. Efficient evaluations of
ranked queries in relational database systems have
recently gained the attention of the research
community. Most of the available solutions to
supporting ranked queries are in the middleware
scenario [3], or in RDBMS only focusing on specific
types of operators and queries outside the core of
query engines[4], while a few of them support top-k
queries in the relational query engine[5][6].

However, relational DB has advantages mainly
for managing structured data, while multimedia data
and full-text data can only be stored as BLOB, CLOB.
In fact, with the emergency of MPEG-7, abundant of

multimedia data in XML format attracts researchers’
attention. One of the key benefits of XML is its
ability to represent a mix of structured and
unstructured data. TeXQuery[7] is the precursor of
the full-text language extensions to XPath2.0 and
XQuery1.0 currently being developed by the W3C,
which provides a rich set of full-text search
primitives and scoring construct without extension to
XQuery data model. The solution of TeXQuery is
specific to text search and lack of fundamental
support of ranked queries, while some solutions
focus on developing algorithms for efficiently
computing top-k matches in XML [8].

Fundamental support of ranked queries is lacking
mainly because neither XML data model nor XML
algebra has the notion for ranking. Therefore,
supporting ranked queries in XML DBMS as a
first-class query type inside the core of query engines
is a significant research challenge. In this paper, we
present rank-aware XML data model and algebra,
which aims at providing a seamless support and
integration of ranked queries with precise queries.

The rest of the paper is organized as follows. We
start in section 2 by giving examples to illustrate our
motivation. Section 3 introduces rank-aware XML
data model. We presents rank-aware XML algebra
and algebraic laws as the base for query optimization
in section 4.Finally, we conclude the paper in section
6.

2 Motivation

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 253

Ranked queries often request the top k results.
Suppose we have a XML database for house (Fig.1
shows two houses of them), following is an example
of top-k query.
Example 2.1 Consider user Linda, who wants to rent
a house in Boston. She needs a house with size
greater than 200m2 and price less than 400$. Further,
to rank the qualified results, she specifies several
ranking criteria: near the park A and with the
appearance as the photograph B that she likes.

Fig.1 a XML database for house

To formulate the query in this example, we have

three filtering predicates (FP) and two ranking
predicates (RP) as follows:

FP1: /house/city=”Boston”
FP2: /house/size>200
FP3: /house/price<400
RP1: near (/house/addr, A)
RP2: similar (/house/appearance, B)
Filtering predicates which return Boolean values

will be used as filter conditions to get the exact match
results, while ranking predicates which return
numeric scores can be used to rank the results.The
overall scoring function can be specified by Linda as
summing up the scores of RP1 and RP2.

In order to get the house according to Linda’s
interests, the query processor can first evaluate the
filter conditions and then sort the results according to
scoring function just as the processing method in
most relational databases. However, processing in
this way suffers from the following two problems.

First, because users may usually be interested in
the top-k results, providing all the possible results is
unnecessary and time consuming.

Second, sorting the results at final stage means
that query processors must evaluate all ranking
predicates for every possible result, which is usually
very expensive.

From the analysis above, we can conclude that the
evaluation cost of the ranked queries will be greatly
reduced if the irrelevant results can be pruned as early
as possible. The general approach we put forward for
supporting ranking in XML query engines is based

on extending XML model and XML algebra to be
rank-aware. We will introduce a new ranking
operator and extend ordinary XML operators to fully
support ranked queries, while a set of algebraic laws
is also defined so that ranking operator can be
interleaved with other operators instead of always
being processed after filtering.

3 Rank-aware XML Data Model
 In this section, we define ceiling score and rank
pattern first, and then extend the XML data model
with rank.

3.1 Ceiling Score
 We have mentioned ranking predicates, which are
functions to return numeric scores. Based on ranking
predicates, a rank expression can be defined.
Definition 3.1.1 (rank expression) Given a set of
ranking predicates RP={rp1,rp2,…,rpn}, a rank
expression FRP is a monotonic scoring function that
maps a set of numeric scores for member of RP to a
overall numeric score.
Definition 3.1.2 (score of XML data tree) Given a
XML data tree T and a rank expression FRP,
RP={rp1,rp2,…,rpn}, we define the score of FRP under
T, denoted S(FRP,T), as

S(FRP, T) = FRP(rp1[T], rp2[T],…,rpn[T])
In above definition, rpi[T](i [1,n]) represents the ∈

score of ranking predicate rpi evaluated on T. For
simplicity, we assume the rpi[T]<=1 in this paper.

The score of a rank expression FRP can be
calculated precisely only if every ranking predicate in
RP be evaluated. However, in order to optimize
query with rank expression efficiently, ranking
predicates need to be evaluated separately and
interleaved with other operators. At some
intermediate stage when we do not have the complete
scores of all the ranking predicates, we also want to
define a partial ranking of results by their current
incomplete scores, so that the resulted order is
consistent with the desired order of further
processing. Ceiling score is defined to order the
output intermediate results to subsequent operations.
Definition 3.1.3 (ceiling score) With respect to a
XML data tree T, a rank expression FRP , and a set of
evaluated ranking predicates EP⊆RP, we can define

the ceiling score (FŜ RP,T) of T under FRP as
Ŝ (FRP, T)=FRP(rp1[T],rp2[T],…,rpn[T])

[]ni ,1∈∀ , rpi[T]=1 if rpi∉EP
Because FRP is monotonic, ceiling score is the max

possible score of a XML data tree which can

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 254

archive.With ceiling scores, XML data trees can be
ordered.
Theorem 3.1 Given a rank expression FRP and two
XML data trees T1, T2, if S (Fˆ

RP,T1) > S (Fˆ
RP,T2),

then T1 must be processed before T2 when we need
further process for answering the query.
 The proof is intuitive, so we will omit it for saving
space.

3.2 Ranked XML Tree
 To fundamentally support ranking, we need
extend XML data model to make it rank-aware. In
order to evaluate the ranking predicates in a rank
expression incrementally step by step, we use ceiling
scores to order the intermediate results for further
processing. Since tree model is natural to describe
XML document, XML algebras such as TAX[9]
based itself on a collection of XML data trees. XML
data trees in a collection are unordered, which is
suitable for precise queries. For top-k queries, data
trees should be ordered according to its ceiling scores
for pruning irrelevant answers as early as possible
during the evaluation process. From now on, we will
add rank notion to XML data tree.
Definition 3.2.1 (rank pattern) With respect to a
rank expression FRP, RP={rp1,rp2,…,rpn}, we can
define a rank pattern RPT(FRP) as a pair (T, R), where
T=(V,E) is a node-labeled and edge-labeled tree such
that:

(1) Each node in V which represents nodes of
interest for ranking has a distinct integer as its label;

(2) Each edge is either labeled pc (for parent-child)
or ad (for ancestor-descendant)

(3) R is a boolean combination of predicates
applicable to nodes according to ranking predicates
in RP and rank expression FRP.

Fig.2 an example for rank pattern

 The rank pattern of query in example 2.1 can be
represented as Fig.2. Compared to pattern in TAX, a
rank pattern here can not only provide nodes of
interest for similar match by T but also provide the
algorithm for calculating scores of those nodes by R.
Definition 3.2.2 (rank tree) With a XML data tree T,
a rank pattern RPT(FRP), and a set of evaluated
ranking predicates P RP, we can define a rank tree
RT of T under RPT and P as RT(RPT,P)[T] such that:

⊆

(1) RT preserves the structure of RPT;

(2) Every leaf node in RT keeps the score of
corresponding ranking predicates in P which have
been evaluated on T, while the root node in RT keeps
the ceiling score of T.

A rank tree always goes with a data tree, and it
keeps the trail of evaluation for ranking predicates.
For a ranking predicate which has not been evaluated,
the corresponding node in rank tree keeps 1 as its
score.

Fig.3 an example for rank tree

We have given example 2.1 which has two

ranking predicates RP1 and RP2. Fig.3 shows a rank
tree according to the first data tree in XML database
as Fig.1 and the rank pattern in Fig.2 when only RP1
has been evaluated. From the figure, we can know
that the score of RP1 is 0.7 and the score of
unevaluated ranking predicate RP2 is 1, so the ceiling
score of the corresponding data tree is 1.7.
Definition 3.2.3 (Ranked XML tree) Given a XML
data tree T, a rank pattern RPT(FRP), and a set of
evaluated ranking predicates P⊆RP, we can define a
ranked XML tree RXT(RPT,P)[T] as a pair (T,RT),
where RT is a rank tree of T under RPT and P. We
call T the data tree of RXT which is denoted as
DT(RXT).The rank of RXT is defined as the ceiling
score of T which is denoted as R(RPT,P)[RXT].
 In order to unify exact match and similar match in
XML, we treat a ranked XML tree as a fundamental
unit, similar to a tuple in RDBMS.

4 Rank-aware XML Algebra

To enable rank-based XML query processing and
optimization, we propose rank-aware XML algebra
(RXA) in which every operation is based on a
sequence of ranked XML trees. Compared to other
XML tree algebra, such as TAX which takes a
collection of unordered data trees as input, RXA uses
a sequence of ranked XML trees as operand. We use
“sequence” to emphasize the order in ranked XML
trees. As we have mentioned, ranked XML trees are
ordered according to their ceiling scores.

4.1 Algebraic Operation

Before we could introduce a new operator for
ranking and extend ordinary XML algebra operators

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 255

with ranking concept, a relationship named rank
order relationship will be given first.

4.1.1 Rank Order Relationship
Definition 4.1.1 (Rank Order Relationship) A rank
order relationship p R is defined over a sequence of
ranked XML trees S with a rank pattern RPT(FRP)
and a set of evaluated ranking predicates P⊆RP such
that:
∀RXT1, RXT2 S, RXT∈ 1p R RXT2

iff R(RPT, P) [RXT1] < R(RPT, P) [RXT2]
 Ceiling scores are the basis for ordering ranked
XML trees. Because a ranked XML tree with higher
rank will always be processed before the others with
lower ranks, it is possible that we can get top-k
results without processing every ranked tree.

4.1.2 Ranking Operator

Obviously, ranking is a necessary and important
operation for top-k query. We define a new ranking
operator r which is able to evaluate the ranking
predicates in a rank expression one at a time.

With a sequence of ranked XML trees S according
to a rank pattern RPT(FRP), a set of ranking predicates
P evaluated , and a set of ranking predicates {p1, p2,…,
pj} RP, ranking operation r[p⊆ 1, p2,…, pj](S) can
output a sequence of ranked XML trees such that:

(1) RXT ∈r[p1, p2,…, pj](S), RXT=(T,RT) iff
∃ RXT1 S, T =DT(RXT∈ 1) RT=∧ RT (RPT,

P {p∪ 1, p2,…, pj})[T]
(2)∀RXT1,RXT2∈r[p1, p2,…, pj](S),
RXT1p RRXT2 iff
 R(RPT,P {p∪ 1,p2,…,pj})[RXT1]<
 R(RPT,P {p∪ 1,p2,…, pj})[RXT2]

 Through ranking operation, a sequence of ranked
XML trees can be reordered by their ranks.

4.1.3 Extended Operators

Ranking operator is a critical basis of RXA,
however, we also should extend the traditional XML
algebra operators to be rank-aware. For the limitation
of space, we only select some typical operators which
are common in XML algebra to explain our
extensions. Our extensions in the following paper is
based on TAX and OrientXA[10], where pattern is an
important concept for extracting nodes of interest.
For simplicity, we reserve the key concepts but leave
some parameters such as adornment SL, projection
List PL out in the following.

1. Rank-aware Selection Operator
Given a sequence of ranked XML trees S, a

rank-aware selection operation based on a rank
pattern RPT and a pattern PAT can be represented as

σ R[PAT, RPT](S)

The result of above operation is a sequence of
ranked XML trees, in which every data tree is a
witness tree under pattern PAT and its rank tree is
selected accordingly from input sequence S.

2. Rank-aware Projection Operator
Given a sequence of ranked XML trees S, a

rank-aware projection operation based on a rank
pattern RPT and a pattern PAT can be represented as
πR[PAT, RPT](S)
The result of above operation is also a sequence of

ranked XML trees, in which every data tree is an
element of TAX projection result under pattern PAT
based on the set of data trees in S and its rank tree is
selected accordingly from input sequence S.

In fact, both rank-aware selection and projection
operation keep the order of output sequence
consistent with the input because no other ranking
predicates are evaluated during the operations.

3. Rank-aware Join Operator
Given two sequences of ranked XML trees S1 and

S2, two rank patterns RPT1 and RPT2 corresponding
to S1 and S2 respectively, a join predicate C, a
rank-aware join operation can be represented as

>< R[C, RPT1, RPT2](S1,S2)
The result of above operation is a sequence of

ranked XML trees. Every data tree T in the result is
an element of TAX join result under join predicate C
based on the sets of data trees in S1 and S2. Every rank
tree RT with T can be constructed according to the
rank trees in S1 and S2 as follows:

(1) If ∃ RXT1 S∈ 1, RXT∃ 2 S∈ 2,
RXT1=(T1,RT1) , RXT2=(T2,RT2), and T is the join
result from T1 and T2, then RT has a new root with
RT1 as its left child and RT2 as its right child.

(2) The ceiling score of RT kept in its root will be
recalculated according to the union of evaluated
ranking predicates set from S1 and S2

4. Rank-aware Construction Operator
Construction operator is necessary for user to

construct query results in XQuery. According to the
OrientXA, construction operation has two patterns,
input pattern and output pattern, as its parameters. To
make construction operation rank-aware, we add two
parameters as well, which are input rank pattern and
output rank pattern.

Given a sequence of ranked XML trees S, an input
pattern PATI ,an output pattern PATO, an input rank
pattern RPTI, and an output rank pattern RPTO, a
rank-aware construction operation can be represented
as

χ R[PATI, PATO,RPTI, RPTO](S)
The result of above operation is also a sequence of

ranked XML trees. Every data tree T in the result is
constructed according to the output pattern PATO

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 256

based on the sets of data trees in S. Every rank tree
RT with T can be constructed according to the output
rank pattern RPTO.

4.2 Algebraic Laws

The aim of rank-aware XML data model and
algebra is to support ranked queries in XML DBMS
as a first-class query type inside the core of query
engines. Query optimizers essentially rely on
algebraic equivalences to enumerate or transform
query plans in search of efficient ones. In this
subsection, we will give algebraic equivalences
based on RXA.

In order to reduce the cost of ranked queries, we
should evaluate the ranking predicates incrementally
instead of evaluating all of them and ordering the
results at final stage. Query optimizers need algebraic
equivalences to separate ranking predicates with each
other and interleave ranking operator with other
operators. To save space, we only concentrate on
some of the equivalences relevant to ranking.

1. Separating law for ranking operator
(1) r [p1, p2,…pj](S) ≡ r[p1](r[p2](…r [pj](S))…))
2. Commutative laws
(1) r [p1](r [p2](S)) r [p≡ 2](r [p1](S))
(2)σ R[PAT, RPT](r [p1](S))
≡ r [p1](σ R[PAT, RPT] (S))
(3) πR[PAT, RPT] (r [p1](S))
≡ r [p1] (πR[PAT, RPT] (S))
(4) χ R[PATI,PATO,RPTI,RPTO](r[p1] (S))
≡ r[p1](χ R[PATI,PATO,RPTI,RPTO] (S))
3. Pushing ranking operator over join operator
(1) r [p1](>< R[C, RPT1, RPT2](S1,S2))
≡ >< R[C, RPT1, RPT2](r [p1] (S1)),
if only data tree of S1 has attributes in p1
(2) r [p1](>< R[C,RPT1,RPT2](S1,S2)) ≡
>< R[C,RPT1,RPT2](r[p1](S1),r[p1](S2)),
if data trees of both S1 and S2 have attributes in p1
Above laws allow us to separate the ranking

operation with several predicates into a series of
ranking operations. After that, ranking operations can
swap with other operations. To be rank-aware, those
algebraic equivalences reserve not only the same
membership in sequence but also the same order in
sequence.

5 Conclusion

We introduce our solution for unifying exact
match and similar match in XML. As the foundation
of our work, we first extend XML data model to
make it rank aware. The extended model is based on
ranked XML trees whose ranks are defined as max

possible scores for a set of ranking predicates under
the circumstance that some of predicates have been
evaluated. A collection of ranked XML trees which
can be ordered by their ranks has been modeled as a
sequence, which is the basis for XML operations.
Second, we extend XML algebra which captures the
ranking property with ranked XML tree model and
introduce new and extended operators to fully
support top-k queries. Third, we also define a set of
algebraic laws that would be used for rewriting and
optimizing top-k queries.

While we believe that the definition of rank-aware
XML data model and algebra is a significant step
towards unifying precise queries and ranked queries,
we are currently working on defining physical
algebra which can be mapped from logical algebra in
order to realize query optimization. Work on
developing proper data structures and algorithms for
optimization is underway.

References:
[1] Sihem Amer-Yahia, Pat Case, Report on the

DB/IR Panel at SIGMOD 2005, SIGMOD
Record, Vol.34, No.4, 2005,pp.71-74.

[2] Sihem Amer-Yahia, Jayavel Shanmugasundaram,
XML Full-Text Search: Challenges and
Opportunities, VLDB, 2005, pp.1368-1368.

[3] K.C.-C. Chang and S. Hwang. Minimal probing:
Supporting Extensive Predicates for Top-k
Queries, SIGMOD, 2002, pp.346-357.

[4] S. Guha, N. Koudas, A. Marathe, and D.
Srivastava. Merging the Results of Approximate
Match Operations, VLDB, 2004, pp.636-647.

[5] Chengkai Li, Kevin Chen-chuan Chang, Ihab F.
IIyas, Sumin Song, RankSQL: Query Algebra
and Optimization for Relational Top-k Queries,
SIGMOD, 2005, pp.131-142.

[6] Zhen Zhang, Seung-won Hwang, Kevin
Chen-Chuan Chang, Boolean+Ranking:
Querying a Database by K-Constrained
Optimization, SIGMOD, 2006, pp.359-370.

[7] S. Amer-Yahia, C. Botev, J. Shanmugasundaram,
TeXQuery: A Full-Text Search Extension to
XQuery. WWW2004, New York, USA, 2004,
pp.583-594.

[8] A. Marian, S. Amer-Yahia , N. Koudas, D.
Srivastava, Adaptive Processing of Top-k
Queries in XML, ICDE, 2005, pp. 162-173.

[9] Jagadish VH, Al-Khalifa S, Lakshmanan L,
Srivastava D, Thompson K, TAX: A Tree
Algebra for XML, DBLP, 2001, pp.149-164.

[10] Meng XF, Luo DF, Jiang Y, Wang Y, OrientXA:
A Effective XQuery Algebra, Journal of Software,
Vol.15, No.11, 2004, pp.1648-1660.

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 257

