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Abstract: - The use of the power and energy functional in the analysis of the electric circuits makes it possible 
to appreciate the energetic equilibrium state attained in the circuit at a certain moment. This paper is concerned 
with a demonstration of the principle of minimum dissipated active power for the steady state circuits under 
nonsinusoidal conditions.  It is shown that the equilibrium state is one of a minimum energetic state. A 
Multisim application is used. 
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1   Introduction 
Conservative systems accept the definition of functionals 
expressed in terms of power or energy. Calculating the 
limits of these functionals represents an important 
breakthrough in formulating and solving optimization 
problems. 

Numerous valuable contributions have appeared in 
the literature over the years. In the theory of the steady 

state circuits, the results obtained by Millar [1] and Stern 
[2] related to the “co-content” function for nonlinear 
resistive and reciprocal network have a special theoretic 
importance due to their generality. C. A. Desoer and E. 
Kuh, [3] (pp. 770-772), had proved the same generally 
properties of the minimum dissipated power for the 
linear and resistive networks. As well, the Romanian 
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professors V. Ionescu [4] and C.I. Mocanu [5] (pp. 350-
353), had important contributions at the theoretical 
development of the electrical circuits minimax theorems.  
All these results are basically consequences of 
Maxwell’s principles of minimum-heat [6] (pp. 407-
408). 

Research works published by authors such as [7-14] 
have thoroughly demonstrated the minimum energetic 
principle for the electric circuits in stationary and quasi-
stationary regime. Thus, for the d.c. circuits, this takes 
the form of the first principle of minimum absorbed 
power: “The minimum of the absorbed power by the 
branches of a linear and resistive circuit in a stationary 
regime is verified by the solutions of the  currents and  
voltages in the circuit, and these are the currents and 
voltages that verifies the first and the second of 
Kirchhoff’s theorems” or,  in other words: “In a 
reciprocal and resistive d.c. circuit the currents and 
voltages get distributed such as the absorbed power by 
the branches of the circuit should  be minimal”.   

In the case of a.c. circuits, the description is the 
second principle of the minimum active and reactive 
absorbed power: “The minimum of active and reactive 
absorbed (generated) power by the branches of a linear 
circuit in quasi-stationary a.c. is verified by the solutions 
in currents and voltages in the circuit, and these are the 
currents and voltages that verify the first and second 
Kirchhoff’s theorems”. And here is just another 
description of the same principle: “In the linear and 
reciprocal circuit in quasi-stationary a.c. regime the 
currents and voltages are distributed such as the active 
and reactive absorbed (generated) power by the 
branches of the circuit should be minimal”. 
     Starting from these principles, this paper presents an 
original contribution concerning the principle of the 
minimum dissipated active power applied for the steady 
state circuits under nonsinusoidal conditions. 
 
 
2   Power Functional for Determining the 
Minimum of the Active and Reactive 
Dissipated Power for Steady State 
Circuits Under Nonsinusoidal Conditions 
Let’s consider an arbitrary linear circuit under periodic 
nonsinusoidal conditions with N nodes. Writing, for each 
branch of the circuit, the voltage and current as Fourier 
series, we may state that 
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where  Lk ,...,1=  is the number of branches, m is the 
finite number of harmonics, )( p

kU and )( p
kI  represents 

the rms values of p-harmonic of voltage respectively 
current,  )( p

kϕ and )()( p
k

p
k γϕ − represents the phase angle 

of p-harmonic of voltage respectively current. For k-
branch of the circuit, shown in figure 1, by using the 
complex representation for p-harmonic of voltage and 
current, we get  
 

 

 
Fig. 1. A branch of circuit under nonsinusoidal 

conditions 
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   We note, for each p-harmonic: the complex potentials 
of nodes, the admittance and the voltage source of k-
branch, with respectively  
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of complex power dissipated by all the L branches is  
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     The real and imaginary parts of the p-harmonic of 
complex power dissipated can be defined as the functionals 
in Hilbert space   
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and they are quite obviously a function class 2C  
in NR2 .  
     Always, the real functional of the complex power is 
positively defined, 
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minimum.  
     The imaginary functional of the complex power can 
be: 1) positively defined,  for all the pair 

mpNiyx p
i

p
i ,...,1;,...,1 ),,( )()( ==  and for 0)( 〉p

kB , i.e. 
a resistive-inductive circuit, then a, and we can define 
that the reactive absorbed power has a minimum; 2) 
negatively defined, for all the pair 
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define that the reactive generated power has a minimum.   
     Consequently, the  minimum points of the functionals 
(6) are the solutions of the system  which contains 4N 
equations: 
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     If we calculate the algebrical sum of the solutions, 
with one of them multiplied with (-1) or ±j , we obtain 
the expressions: 
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which are identical with the Kirchhoff’s equations for 
the p-harmonic of currents (1st Kirchhoff theorem), 
expressed in all the N nodes of the circuit. 
     Consequently, the following principle can be issued 
(the generalization of the  Principle of Minimum Active 
and Reactive dissipated Power in linear circuits under 
nonsinusoidal conditions): in the circuits under 
nonsinusoidal conditions, for each p-harmonic, the 
voltages and currents  of the branches verify the 
Kirchhoff’s theorems  and correspond to the minimum 
dissipated active and reactive power of the circuit.    
 

 
3  Example 
Let’s consider a linear circuit “splitter” which is used in 
TV cable for power amplifier of signals, shown in figure 
2. 
     The instantaneous values of nonsinusoidal voltage 
source have the practical form: 

     
    

Fig.2. The “splitter” 
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      If we consider the potential 1V  variable, for each 
harmonic of voltage source we can calculate the 
minimum of the power dissipated functionals. 
a) The power dissipated functional for d.c. regime 
of the splitter can be expressed by 
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functional are obtained when 
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 relation who is identical with the 1st   Kirchhoff’s 
theorem expressed in node 1. 

b)    If     we consider the potential ,)()(
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a.c. regime of the splitter the functional of the complex 
dissipated power is 
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Then, the minimum of the power functional are the  
solutions of the system 

and, if we calculate the algebrical sum of the solutions 
of system (13), with the second equation multiplied 
with j− , we obtain the 1st   Kirchhoff’s theorem 
expressed in node 1 
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     The imaginary part of power functional is zero,  
.0)( =p
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        Fig.3, a. The power dissipated by '

1R in d.c. 
 

 
Fig.3, b. The active power dissipated by ''

1R in a.c. 
 

 
         Fig.3, c. The power dissipated by ''

2R  in d.c. 
 
     We calculate using Multisim, figure 3, a, b, and c, 
the dissipated active power for different values of the 
resistances. The results are shown in table 1. The first 
line contains the nominal values of conductance, and 
the last line of table contains the adapted values of all 
the resistances, i.e.  each resistance absorbed by the 
circuit the maximum active power. In this case, the 
value of the dissipated active power is the big one 
compared with the other values.   
 
 

Table 1 
   Values of 
 Conductances  
        (S) 

Total Dissipated 
Power  in d.c. 
        (mW) 

Total Dissipated 
ActivePower  in a.c.

(mW) 
G1= G2 = G3 = 0.01        499.593           499.593 
G1= 0.01,  G2 = 0.013

G3 = 0.01 
       524.818           524.818 

G1= 0.01, G2= 0.02,
G3 = 0.025 

        1.662            1.662 

G1= 0.01, G2= 0, 
G3 = 0.01 

        374.832            374.832 

G1= 0.01, G2= 0.04,
G3 = 0.01 

        624.810            624.810 

G1= 0.02, G2= 0.01,
G3 = 0.01 

        749.664            749.664 

 
 

5.Conclusions 
To determine the extreme of the power functional in case 
of the linear circuits is a problem of utmost importance, 
with quite useful didactic, theoretical and practical 
applications. 
     It has been established that the solutions of the linear 
electric circuit, under nonsinusoidal conditions, represent 
a minimum of the dissipated power in the circuit.     
     The energetic problem under debate in the present 
work has a wide range of practical applications and it 
aims at cutting down the wastes in the energetically 
systems. 
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