
NNQM: A novel non-navigating XML query model

LIN XUDONG1,2 XU DE1 WANG NING1

1. School of Computer and Information Technology, Beijing Jiaotong University

Beijing 100044, China

2. Department of Information Engineering, Environmental Management College of China, Qinhuangdao

Hebei 066004, China

fydong_xl@126.com dxu@bjtu.edu.cn evenly_wang@hotmail.com

Abstract: XQuery and Keyword query are the main methods to get XML data. But the former is too complicated for

non-professional users and the latter doesn’t have enough semantic capabilities to capture user’s intents completely.

Based on data models, this paper analyzes the reasons which lead to the drawbacks of existing query methods. And then,

a novel auto-navigating XML query model is proposed. The query model is composed of the XML data model, the

query language and the query algorithm. The data model stores XML documents in a clustering way according to the

semantic relativity. The query language has the intuitive grammars and is suitable for non-professional users to use. The

query algorithm has auto-navigating capability and can find the target data from XML documents without complete

structure information.

Keywords: XML, non-navigating, query model, semantic relativity

1. INTRODUCTION

To get target data from XML documents, many query methods

were proposed. These methods can be classified into two groups:

navigating method and non-navigating method. XQuery[1] is

generally acknowledged standard of the former, while keyword

query methods such as XSEarch[2], Equix[3] belong to the latter.

XQuery is published by W3C. It has been supported by almost

every native xml database and xml enabled database. Before using

XQuery, users must learn its complicated syntax and have prior

knowledge about the structure of XML documents, which prevents

non-professional users from utilizing XQuery freely.

Compared with XQuery, keyword query methods [2-6] are more

suitable for non-professional users. While their limited semantic

capabilities couldn’t capture users’ intents completely, so keyword

query methods often return results with too many irrelevant

answers[7].

To address the existing problems in the mentioned query methods,

we propose a non-navigating query model (NNQM) composed of

the query language, its supporting data model and corresponding

query algorithm. Our purpose is to enhance the auto-navigating

capability of query algorithm and make non-professional users

query from XML documents in a user-friendly way.

This paper is organized as follows: section 2 analyzes the

drawbacks of existing query methods according to their data

models. The details of data model is presented in section 3.

Section 4 describes query language and query algorithm. Section 5

proposes some conclusions and outlines the future work.

2. DRAWBACKS ANALYSIS BASED ON DATA

MODEL

From section 1, we know that almost every existing query method

has some drawbacks. These drawbacks are mostly relevant to the

limitations of their data models.

XQuery uses XML Data Model (XDM), a kind of tree data model,

as its data model. Most of keyword query methods also use tree

models to store XML documents [2-6]. In tree models, queries must

begin from the root of the tree. If users want to query the target

nodes of the tree, two methods can be chosen. The first one, which

is used by XQuery, is to give the full paths from the root node to

the target nodes. That is why XQuery users need to know the

accurate structure of XML documents. The other one, used by

keyword query methods, is to provide the names and values of

target nodes. The keyword query algorithms begin from the root to

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 270

traverse all nodes of the tree to find the target nodes. In general,

the overheads of keyword query algorithms are very high and how

to find the meaningful lowest common ancestor (mlca) is really a

challenge.

In Oracle 10g[8] and DB2 V9[9], SQL can be used to query XML

data beyond relational model. Although relational model destroys

the hierarchical relationships between different elements of XML

documents, it also proposes flexibility: the queries can be executed

by using any tables as their beginnings. The root nodes of XML

documents aren’t the unique entrances of queries yet. But SQL and

relational model can’t fully utilize this flexibility to simplify the

querying process. When users want to query XML data distributed

in many relational tables, they must provide every link between

tables using “where” clause. In some respects, users have to do the

same things as using XQuery, that is, providing the full paths of

their target data.

3. DETAILS OF DATA MODEL

To improve the query method, we must address the issues of data

models at first. The data model that supports humanized query

should have the following features:

1) The model should support the query beginning from any

node;

2) The model should store XML elements in a clustering way

to improve traverse performance;

3) The model should have an auto-navigating capability to

locate the target node by itself.

In terms of these features, we propose a novel data model: Almost

Black Box XML Data Model (ABBXDM), shown in Figure 2.

ABBXDM is made up of four units: Gates Unit (GU), Sets Unit

(SU), One-way Pointers Unit (OPU), and Two-way Pointers Unit

(TPU).

Figure 1: ABBXDM

GU is shown as a table in the left of Figure 1. It includes four

columns, “Id”, “Gates”, “h” and “p”, denote the unique flag, the

name, the hierarchy and the parent of every gate respectively. If

the gate is in the first hierarchy, the value of “p” will be “^”.

The blocks named “SetX” in the right of Figure 1 are SU. These

sets belong to different hierarchies.

OPU is made up of solid lines with one-way arrows which point

from gates to sets in Figure 1.

The dash lines with two-way arrows which link the father sets and

son sets in Figure 1 belong to TPU.

We can set up the storage structure of ABBXDM in the following

steps after scanning the DTD files of XML documents [10][11]:

1) Create GU and SU;

a) If the relationship between one element and its son

element is one-multi (* or +), this son element will be

put into a new set , and a corresponding tuple is added to

the GU;

b) If the relationship between one element and its son

element is one-one (, or ?), this son element will be put

into the same set as its father element’s;

c) The attributes of one element will be put into the same

set of this element’s.

2) Create the two-way pointers between the set coming from

the father element and the sets coming from the son

elements;

3) Create the one-way pointers between the sets and their

corresponding gates.

Compared with tree models, ABBXDM congregates the

semantic-relevant elements and attributes to one set and allows

query begin from any set (gate). Simultaneously, ABBXDM also

solves the main problem existing in relational models, that is, how

to retain the hierarchical relationships between elements.

For the XML document [12] shown in Figure 2 and its DTD file

shown in Figure 3, the ABBXDM with actual data is shown in

Figure 4:

In the ABBXDM instance, the first column of every set is called

“key column”. We use “@” to denote the attribute of one element,

and use “↓” to denote the son element. If the father element of

one element is as same as “key column” element, the “↓” of this

element can be omitted.

In fact, every set is composed of several blocks. Each block is

composed of the data of all sub elements with the same name and

the same father element.

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 271

Figure 2: XML fragment

Figure 3: DTD

Figure 4: ABBX instance

4. QUERY LANGUAGE AND QUERY

ALGORITHM

In ABBXDM, users can choose some gates to begin their queries,

and the novel querying algorithm, Query By Itself (QBI) can find

the target data automatically. Before describe the details of QBI,

let’s introduce the query language, Get-Enter-Where (GEW) at

first.

The general GEW grammars have three formats:

1) The first format:

‐ Get set1.*, set2.* …,

‐ Enter gate1, gate2 …,

‐ Where condition of gate1 and/or/not condition of gate2

& …;

2) The second format (The syntax of “Enter” is different,

adding “In” keyword.):

‐ Enter (gate1 In ancestorGate1), (gate2 In ancestorGate2)

3) The third format (The syntax of “Enter” is different,

adding “Of” keyword.):

‐ Enter (gate1 Of fatherGate1), (gate2 Of fatherGate2) …,

Keywords “Get”, ”Enter” and ”Where” are called main keywords

of GEW. “Get” is used to tell QBI the target data, “Enter” tells

QBI the beginnings of the queries, and “Where” is the restrictions

of queries in QBI..

Keywords “In”, ”Of” are called additional keywords of GEW.

When users wants to provide the ancestor gate of one gate, “In”

can be used. It can help QBI to find the accurate gate when there

are some gates with the same name. “Of” can tell QBI the father

gate of one gate. “Of” can be used nestedly to help QBI find the

accurate gate when nested relationships between elements of XML

exist.

The query Q1 is described in the natural language:

Q1: find the titles and publishing years of the books whose

authors’ first names are “Joey” and titles of certain chapter are

“Introduction”.

Q1 can be denoted using GEW as below:

Get book.title, book.publishing_year,

Enter author, chapter,

Where author. first_name = ’Joey’ And chapter. title

= ’Introduction’;

The query described in GEW will be submitted to QBI to execute.

QBI has the capability to find the target data automatically. For

QBI, SLCA (Smallest Lowest Common Ancestor) is a very

important conception. Let’s explain it at first:

For a tree, SLCA can be defined as the root node of the tree which

fulfills the following two demands [13][14]:

1) The sub tree must contain all query keywords in their leaf

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 272

nodes;

2) The smaller sub trees which also contain all query

keywords don’t exist.

QBI will execute the query in the following steps:

1) Find the gates from “Enter” keyword;

2) Enter the gates and reach the corresponding sets;

3) Find the corresponding tuples of the sets using the

conditions following “Where” keyword;

4) Begin from every corresponding tuples found in 3), find the

corresponding father tuples respectively (the father tuples

are themselves if the tuples belong to the root set), at the

same time, compare the found father tuples:

a) If these father tuples are in the same set:

i. If an intersection can be found from these father tuples,

go to 5);

ii. If the intersection doesn’t exist, the result of this

query is null, quit the algorithm;

b) Else, if these father tuples are in the different sets,

continue to find the higher father tuples, and then go to

4.a);

5) Record the highest father set which includes intersection

tuples as “BEGIN_SLCA”;

6) Reorder the sets appearing in “Get” keyword in the order of

hierarchies (from the highest one to the lowest one), but to

return the results with the right order, record the original

order of every set at the same time;

7) Find the top one from the reordered sets appearing in “Get”

keyword, record it as “REAULT_SLCA”;

8) Compare “BEGIN_SLCA” with “RESULT_SLCA”:

a) If “BEGIN_SLCA” is higher than “RESULT_SLCA”:

find the SLCA of “BEGIN_SLCA” and

“RESULT_SLCA” which can be recorded as

“REAL_SLCA”;

i. If “REAL_SLCA” equals “BEGIN_SLCA”: begin

from the corresponding tuples of “REAL_SLCA”,

continue to find the corresponding lower tuples until

the tuples of “RESULT_SLCA”, and then go to 9);

ii. Else, if “REAL_SLCA” is higher than

“BEGIN_SLCA”: begin from the corresponding tuples

of “BEGIN_SLCA”, continue to find the

corresponding higher tuples until the tuples of

“REAL_SLCA”, and then, begin from the

corresponding tuples of “REAL_SLCA”, continue to

find the corresponding lower tuples until the tuples of

“RESULT_SLCA”, and then go to 9);

b) Else, if “BEGIN_SLCA” is in the same hierarchy as

“RESULT_SLCA”:

i. If “BEGIN_SLCA” equals “RESULT_SLCA”: go to

9);

ii. If “BEGIN_SLCA” is different from

“RESULT_SLCA”: find the “REAL_SLCA”, begin

from the corresponding tuples of “BEGIN_SLCA”,

continue to find the corresponding higher tuples until

the tuples of “REAL_SLCA”, and then, begin from the

corresponding tuples of “REAL_SLCA”, continue to

find the corresponding lower tuples until the tuples of

“RESULT_SLCA”, and then go to 9);

c) Else, if “BEGIN_SLCA” lower than “RESULT_SLCA”:

start from the corresponding tuples of “BEGIN_SLCA”,

continue to find the corresponding higher tuples until the

tuples of “RESULT_SLCA”, and then go to 9);

9) Begin from corresponding tuples of “RESULT_SLCA”, get

the target data according to the “Get” keyword in the order

of hierarchy;

10) Reorder the results with the original order recorded in 6).

5. CONCLIUSION

In this paper, we propose a novel query model to make

non-professional users can query XML documents in a

user-friendly way. We believe NNQM is not only valuable for

querying XML documents, but also can play an important role in

updating XML documents.

We will continue to research and expose the details of NNQM in

the future work..

References

[1] W3C, XQuery1.0: An XML Query Language.

http://www.w3.org/TR/2007/REC-xquery-20070123/, 2007

[2] Sara Cohen, Jonathan Mamou, Yaron Kanza, Yehoshua Sagiv,

XSEarch: A Semantic Search Engine for XML, In Proceedings

of the 29th International Conference on Very Large Databases

(VLDB ‘03), 2003, pp.45-56

[3] Sara Cohen, Yaron Kanza, Yakov Kogan, Werner Nutt,

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 273

Yehoshua Sagiv, Alexander Serebrenik, EquiX: A search and

query language for XML, Journal of the American Society for

Information Science and Technology, vol.53, no.6, 2002,

pp.454–466

[4] Chavdar Botev, Jayavel Shanmugasundaram,

Context-Sensitive Keyword Search and Ranking for XML, 8th

International Workshop on the Web and Databases (WebDB

2005), 2005

[5] Lin Guo, Feng Shao, Chavdar Botev, Jayavel

Shanmugasundaram, XRANK: Ranked Keyword Search over

XML Documents, SIGMOD, 2003

[6] Li Xiaoguang, Yu Ge, Gong Jian, Wang Daling, Bao Yubin.

Towards Effective and Efficient NFS Querying on XML

Document, Chinese Journal of computers, vol.30, no.1, 2007,

pp.57–67 (in Chinese with English abstract)

[7] Yunyao Li, Cong Yu, H.V.Jagadish, Schema-Free XQuery, In

Proceedings of the 30th International Conference on Very

Large Databases (VLDB ‘04), 2004

[8] Oracle White Paper, Mastering XML DB Queries in Oracle

Database 10g Release 2, 2005

[9] DB2 Redbooks, DB2 9 pureXML Guide, 2007

[10] Mustafa Atay, Artem Chebotko, Dapeng Liu, Shiyong Lu,

Farshad Fotouhi, Efficient schema-based XML-to-Relational

data mapping. Information Systems, vol.32, no.3, 2007,

pp.458–476

[11] J. Wang, X. Meng, S. Wang, SUPEX: A Schema-Guided Path

Index for XML Data, Doctoral Poster, In Proceedings of the

28th International Conference on Very Large Databases

(VLDB ‘02), 2002

[12] DBLP dataset, http://dblp.uni-trier.de/xml/

[13] Lin Guo, Feng Shao, Chavdar Botev, Jayavel

Shanmugasundaram, The Index-Based XXL Search Engine for

Querying XML Data with Relevance Ranking, EDBT, 2002,

pp.477–495

[14] Yu Xu, Yannis Papakonstantinou, Efficient Keyword Search

for Smallest LCAs in XML Databases, SIGMOD, 2005

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 274

