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Abstract: - The paper deals with a global optimization algorithm using hybrid approach. To take the advantage of 
global search capability the evolution strategy(ES) with some modifications in recombination is used first to find 
the near-optimal solutions. The sequential quadratic programming(SQP) is then used to find the exact solution 
from the solutions found by ES. One merit of the algorithm is that the solutions for multimodal problems can be 
found in a single run. Ten popular test problems are used to test the proposed algorithm. The results are 
satisfactory in quality and efficiency. 
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1  Introduction 
The global optimization has been a hot research topic 
for a long time. With the progress of evolutionary 
computation, many global optimization algorithms 
have been developed using various evolutionary 
methods. Tu and Lu[1] proposed a stochastic genetic 
algorithm(StGA) to solve global optimization 
problems. They divided the search space dynamically 
and explored each region by generating five offspring. 
The method was claimed to be efficient and robust. 
Toksari[2] developed an algorithm based on ant 
colony optimization(ACO) to find the global solution. 
In his method each ant searches the neighborhood of 
the best solution in the previous iteration. Liang et 
al.[3] used particle swarm optimization (PSO) to find 
global solutions for multimodal functions. Their 
method modified the original PSO by using other 
particles’ historical best data to update the velocity of 
a particle. In doing so, the premature convergence can 
be avoided. Zhang et al.[4] proposed a method called 
estimation of distribution algorithm with local 
search(EDA/L). This method used uniform design to 
generate initial population in the feasible region. The 
offspring are produced by using statistical 
information obtained from parent population. The 
local search is used to find the final solution. 
  Chen and Hsu[5] developed an algorithm called 
rank-niche evolution strategy(RNES) to find 
Pareto-optimal solutions for multi-objective 
optimization problems. The algorithm was based on 
evolution strategy(ES) incorporated with a novel 
fitness function. Since the algorithm is pretty simple 
and generates many Pareto optimal solutions in a 
single run, it is modified to solve global optimization 
problems with single or multiple solutions in this 
paper. Ten widely used test functions are employed to 

test against the algorithm. The global solutions for all 
test problems are found. 
 

2  Brief Review of ES 
The evolution strategy(ES) was developed by 
Rechenburg[6] and extended later by Schwefel[7]. 
There are three evolutionary steps in ES. The first one 
is recombination and it is executed by one of the 
following formulas. 
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where '
ix  is the new ith design variable. iax ,  

and ibx ,  are the ith design variables of two 
individuals a  and b  randomly chosen from μ  
parent individuals, respectively. These two parents are 
used to generate a specific new individual for 
operations (B) and (C). iai

x ,  and ibi
x ,  are  the ith 

design variables of two individuals randomly chosen 
from μ  parent individuals. In operations (D) and (E) 
each new design variable may come from two 
different parents. The number of so generated new 
individuals isλ and this value is usually several times 
ofμ .  

In addition to the five formulas given by Schwefel, 
Chen[8] developed another three formulas as follows: 
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Where 1t is a random number between 0 and 1. 
2t is a random number between -0.5 and 0.5. m is an 

arbitrary integer between 1 and μ . 
The purpose of adding formula (2) is to provide 

the chance of generating any value between iax ,  and 
ibx , . Formula (3) gives the chance to generate a value 

neighboring iax , or ibx , . Formula (4) finds the 
centroid of some randomly selected individuals. The 
adding of the three formulas to the original five 
formulas can increase the search area in the design 
space. 

The second step in ES is the mutation operation. 
The mutation is done by the following formulas. 

''
iiii zxx σ+=                   (5) 

and  
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where '
ix  is the mutated ith design variable from 

ix . ix  is the ith design variable of an individual 
from recombination. '

iiz σ  is the change for the ith 
design variable of that individual. '

iσ  is the updated 
self-adaptive variable associated with the ith design 
variable. iσ  is the self-adaptive variable used for 
the previous mutation in the last generation. The 
variable iσ  is also subjected to the same 
recombination operation in equation (1). n  is the 
number of design variables. z  and iz  are two 
random numbers from a normal distribution 

)1,0(N with mean zero and standard deviation one. 
Equation (7) is the probability density function of 

the normal distribution. 
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where the mean value of the normal distribution is 
0 and the standard deviation is 1.  

The last step in ES is the selection operation 
which is used to choose some best individuals 
resulted from mutation operation to enter the next 
generation. Two approaches are available. One is 
called ),( λμ selection and the other one is named 

)( λμ + selection. For ),( λμ selection, the best μ  
individuals are chosen to enter the next generation 
from the λ  offspring. The )( λμ + selection 
combines λ offspring with μ parents in current 
generation first and then chooses the best 
μ individuals from the combined pool to be parents 
in the next generation. The ),( λμ selection may have 
better chance to find the global solution while 
the )( λμ + selection may accelerate the convergence 
rate. 
 

3  RNES Algorithm 
The rank-niche evolution strategy(RNES) was 
developed by Chen and Hsu[5] to solve 
multi-objective optimization problems using 
evolution strategy. For finding global optimum 
solution or solutions, the RNES is modified as 
follows: 
(1) Use random numbers to generate μ individuals in 
the design space as the initial population. Establish an 
external elite pool that contains some best individuals. 
(2) Perform recombination operation using equation  
(3) to produceλ temporary offspring.  
(3) Perform mutation operation using equation (5). 
(4)Compute objective function values for 
allλ individuals.  
(5) Compute constraint function values. If the 
problem has constraints, compute all constraint 
function values for all λ individuals.  
(6) Select elites using ),( λμ approach and update 
the external elite pool. For unconstrained 
optimization problems if the individual with smallest 
objective function value is better than the one in the 
elite pool, replace the one in the pool by the best one 
obtained in this generation. For constrained 
optimization problems, choose the best feasible 
solution and update the one in the external pool if 
necessary. If no feasible solution is found, no 
updating is performed. For multimodal problems 
multiple global solutions may exist. In order to find 
these solutions in a single run, several different elites 
are saved in the external pool. To avoid ES search 
converging to a single solution, these elites must be 
separated from each other by a distance given by 
equation (8). 
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  where ),( jid eli is the normalized distance 
between elite i and elite j. eli

kix ,  and eli
kjx , are the kth 

design variable for the ith and the jth elites, 
respectively. U

kx  and L
kx are the upper and lower 

bound for the kth design variable, respectively. eliε  
is a user defined  smallest distance between two 
different elites. 
(7) Based on objective function value and constraint 
violation, select the best μ individuals to enter the 
next generation. For unconstrained optimization 
problems, put the λ individuals in ascending order 
based on their objective function values. The first 
μ individuals are chosen to enter next generation. For 
constrained optimization problems, the selection rules 
will be discussed in the next section. 
(8) If the maximum number of generation is reached, 
go to step (9). Otherwise, go to step (2). 
(9)Use sequential quadratic programming(SQP) to 
find the final solutions. The starting points for SQP 
are those individuals saved in the external elite pool. 
The best solution or solutions resulted from SQP or 
ES search are taken as the global solutions. 
 
4 Selection Steps for Constrained 
Problems  
The selection rules for constrained problems are 
executed in the following order. 
(1)Select feasible solution to enter the next generation 
first. If the number of feasible solution is greater 
than μ , select the best μ individuals according to 
their objective function values. If the number of 
feasible solution is less than μ , select all feasible 
solutions first and go to rule (2). 
(2)For infeasible solutions compute the normalized 
violation for each violated constraint. Divide the 
infeasible solutions into several ranks based on the 
domination check of constraint violation. The 
domination check proceeds as follows: For any two 
individuals A and B, if every constraint violation of A 
is less than that of B, then B is dominated by A. 
Otherwise, A and B do not dominate each other.  

Perform domination check on all infeasible 
solutions using the normalized violations to find the 
non-dominated ones. These infeasible solutions are 
assigned to the first rank. Repeat the domination 
check for the rest infeasible solutions to allocate 
individuals to other ranks. The higher the rank is, the 
less the overall constraint violation. 
(3)Select infeasible individuals from rank one first. If 
the number of individuals in rank one is less than the 
required number to fill upμ , go to rank two and 
repeat this process until the required number μ is 
reached. If the number of individuals in the lowest 
rank used to fill up μ is greater than the required 
number, use objective function values to determine 
the ones to be selected.  
 

5  Numerical Examples 
Ten test problems including five unconstrained and 
five constrained problems are used to test the 
proposed algorithm. The global solutions are found 
for all test problems. Due to limited space only four 
of them are shown in this paper. The first one is the 
Rastrigin function [9]. The second one is the Bumpy 
equation[10]. The first two problems are for 
unconstrained optimization. The third one is 
C-Bumpy equation[10]. The last one is Himmeblau 
equation[11]. The last two problems are for 
constrained optimization.  
 
Problem 1: Rastrigin function[9] 
   The optimization problem is formulated as 
follows.   
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Fig. 1 shows the multimodal nature of the 
problem. Table 1 lists the solutions found by the 
proposed algorithm and other papers. It is clear that 
the proposed method finds the best solution compared 
with other methods. Also the cpu time spent for the 
proposed method is less than those of the other two 
methods.  

 

       Fig. 1 Rastrigin function 
 

Table 1 Optimum solutions of problem 1  

Exact Solution[9] ES+SQP Lee[12] GA [12]

1x  0.0 -0.15E-08 -0.002167 -0.000153

2x  0.0 0.37E-07 -0.000214 0.000580

OBJ 0.0 0.00E+00 0.00094 0.00007

No.e NA* 2000 1400 2500 

time(s) NA* <1 109 1 
No.e is No. of function evaluations, time(s) is CPU 
time(sec), NA* is not available 
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Problem 2: Bumpy equation[10] 
   The unconstrained problem is defined as 
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 The results of various methods are shown in Table 
2. The proposed method spends the least 
computational time to find the global solution. 

 
Table 2 Optimum solutions of problem 2 

 Exact 

Solution[10] 

ES+SQP Lee[12] GA [12]

1x  1.3932 1.39522 1.3888 1.3942 

2x  0 0.0 0.000182 0.000153

OBJ 0.67367 0.673663 0.67364 0.67366

No.e NA 280 550 2500 

time(s) NA <1 34 1 

 
Problem 3: C-Bumpy equation[10] 
   The objective function of this problem is the same 
as problem 2. But two constraints are added. The 
optimization problem is defined as 
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Fig. 2 shows the local solutions of the problem. 
Table 3 gives the solutions obtained by various 
approaches. Again the proposed method provides 
better solution. The computational time is also the 
least one. 

 
       Fig. 2 C-Bumpy function 
 

Table 3 Optimum solutions of problem 3 

Exact Solution[10] ES+SQP Lee[12] DPF[12]APF[12]

1x  1.593 1.601 1.639 1.650 1.563

2x  0.471 0.468 0.459 0.456 0.480

OBJ 0.365 0.365 0.362 0.361 0.363

No.e NA 1900 900 2500 2500

time(s) NA <1 61 1 1 

 
Problem 4: Himmeblau function[11] 
   This constrained optimization problem having 
five design variables is defined as 
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   The optimum solutions are listed in Table 4.  
The proposed method finds the second best solution 
and spends the least computational time. 
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Table 4 Optimum solutions of problem 4 
ES+SQP Lee[12] Himmeblau[11] Homaifar[13]

1x  78.000 79.293 78.62 78.000 

2x  33.000 34.186 33.44 33.000 

3x  29.995 31.186 31.07 29.995 

4x  45.000 39.920 44.18 45.000 

5x  36.776 36.195 35.22 36.776 

OBJ -30665.45 -30225.7 -30373.9 -30665.6 

No.e 800 1650 NA NA 

time(s) <1 138 NA NA 

 

6  Conclusion 
The proposed global optimization algorithm using 
hybrid approach of ES plus SQP has been proved to 
be successful in solving 10 test problems. For most 
test problems the proposed method not only finds the 
best solution compared with other methods but also 
spends the least computational time. 
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