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Abstract: This paper is devoted to the methods for combining heterogeneous sets of learning data: set of training
examples and set of IF-THEN rules with unprecisely formulated weights. Adopting the probabilistic (Bayes)
model of recognition task and assuming known form of class conditional probability density functions (CPDFs)
with unknown parameters, the recognition algorithm via fusion of both sets of data is presented. Proposed concept
of combining of input data consists in treating of both sets as sources of information about unknown parameters
of CPDFs, which leads to the modified maximum likelihood (ML) method of parametr estimation. In proposed
procedure the likelihood function is maximized taking into account constraints provided by the set of rules. A
series of numerical examples with computer generated data for several cases which differ in form and number of
rules is considered. To find feasible solution of ML problem two approaches were employed. The first method
uses the Kuhn-Tucker conditions for the nonlinear problem with inequality constraints, the second one however is
approximated procedure which does not guarantee the optimality of result. For each solution the estimation error,
i.e. distance between values of estimator and parameter is calculated as a measure of its quality, which allows us
to rank procedures and to imply some practical conclusions.
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1 Introduction

During the two past decades the fusion of various
sources of knowledge was firmly established as a
practical and effective solution for difficult pattern
recognition tasks ([1], [2], [3]). This idea is estab-
lished using classifier combination approach, which
in the literature is known under many names: hy-
brid methods, decision combinations, classifier fu-
sion, mixture of experts, modular systems, to name
only a few ([4]).

Fusion of the classifiers outputs is the very
promised way of constructing combined algorithms.
Most of the research on classifier ensambles is con-
cerned with generating ensambles by using a single
learning model. Different classifiers are received by
manipulating the training set, or the input features,
and next their decisions are combined in some way
(typically by voting) to classify new patterns. Another
approach is to generate classifiers by applying differ-
ent learning algorithms to a single data set ([4]).

For the probabilistic model of recognition task
and Bayesian decision theory, fusion of classifiers de-
notes combining of estimators of posterior probabili-
ties of classes, which are produced by simple classi-
fiers on the base of their input data. There are many

ways known in literature of fusion of posterior prob-
ability estimators. As an example, one has to men-
tion the works based on class-conscious combiners
[4] where the discriminant functions of the combined
classifier are obtained as the average values of pos-
terior probabilities of simple classifiers. In another
methods discriminant function of combined classifier
is obtained via weighted sum of the estimators of pos-
terior probabilities of simple classifiers ([5], [6], [7],
[8]) and the concrete procedures differ with concepts
of weight coefficients.

In the present paper the novel classification prob-
lem with probabilistic model is discussed, in which
we assume known form of class conditional proba-
bility density functions (CPDFs) with unknown pa-
rameters and as an input data the set of training ex-
amples (learning set) and the set of expert rules are
considered. The main question is how to utilize the
information contained in the both sets to obtain good
estimates for the unknown parameters. To solve this
problem we propose to apply the modified maximum
likelihood method of parameter estimation, in which
the likelihood function is maximized taking into ac-
count constraints provided by the set of rules. This
approach, i.e. the use of additional source of infor-
mation contained in rules leads to the better estima-
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tion results in comparison with maximum likelihood
method without constraints.

This paper is a sequel to the authors earlier publi-
cations ([8], [9], [10]) and it yields an essential exten-
sion of the results included therein and dealing with
combining rule-based and sample-based classifiers.

The contents of the paper are as follows. In sec-
tion 2 we introduce necessary background and for-
mulate the parametric case of classification problem
with probabilistic model and for input data contained
in learning set and expert rules. In section 3 com-
bined classifier for the problem in question is pro-
posed, which construction is reduced to the maximiza-
tion of likelihood function with constraints provided
by expert rules. Section 4 describes numerical exam-
ples and yields results of comparative analysis of two
optimization procedures for different form and num-
ber of expert rules. Finally, conclusions are presented
in section 5.

2 Preliminaries and the Problem
Statement

Among different approaches to the uncertainty man-
agement in computer-aided recognition systems, the
statistical decision theory is still an attractive and ef-
fective method ([12], [13], [14]). This theory assumes
that both the vector of features describing recognized
pattern x ∈ X ⊆ Rd and its class number j ∈
M = {1, 2, ..., M} are observed values of a pair of
random variables (X,J), respectively. Its probability
distribution is given by prior probabilities of classes
pj = P (J = j) and class-conditional probability
density functions (CPDFs) of X - fj(x) = f(x | j)
( x ∈ X , j ∈M).

In pattern recognition a function ψ(x) : X →M
is called a classifier. If we know the priors and CPDFs
then we can design the optimal (Bayes) classifier ψ∗,
minimizing the probability of misclassification, which
makes decision according to the following rule:

ψ∗(x) = i if pi(x) = max
k∈M

pk(x), (1)

where posterior probabilities pj(x) = P (J = j | x)
can be calculated from the Bayes formula, viz.

pj(x) =
pj fj(x)

f(x)
. (2)

Although in practical pattern recognition prob-
lems we rarely have complete knowledge about pri-
ors and CPDFs, sometimes however, an advance
vague information about the probability distribution
of (X,J) is available. This information can have var-
ious nature and can be quite specific (e.g. ,,in the

first class features are normal“, or ,,probability of the
second class is thought to be a monotone function of
x ∈ R“, or ,,for x < 0 probability of the third class is
almost constant“), but very often it refers to forms of
CPDFs, i.e. describes the class of functions (or prob-
ability distributions) which CPDFs belong to.

Let us now consider exactly such a case, i.e. we
assume that for each class j ∈ M, CPDF fj(x) has
known parametric form and is uniquely determined by
the values of the parameter vector θj . To emphasise
this fact we will further write fj(x) as fj(x; θj). Pa-
rameters θj are constant but unknown and prior prob-
abilities pj are assumed to be unknown as well.

Instead, suppose we have two qualitatively differ-
ent kinds of data which contain hidden information
on unknown prameters of probability distribution of J
and X. Let us present form of available information
we may use.

1. Learning set:

S = {(x1, j1), (x2, j2), ..., (xN , jN )}, (3)

where xi denotes the feature vector of the i-th learning
pattern and ji is its correct classification.

Additionally, let Si = {xi1, xi2, ..., xiNi} denotes
the set of learning patterns from the i-th class. Sam-
ples in Si are assumed to be drawn independently
from a distribution with parameters θi and they do not
yield information about θj , j 6= i.

2. Expert rules:

R = {R1, R2, ..., RM}, (4)

where

Ri = {r(1)
i , r

(2)
i , ..., r

(Ki)
i }, i ∈M,

∑
Ki = K

(5)
denotes the set of rules connected with the i-th class.
The rule r

(k)
i has the following general form:

IF x ∈ D
(k)
i THEN J = i WITH posterior prob-

ability greater than p
(k)
i and less than p

(k)
i .

Equivalently, the rule r
(k)
i , treated as a source of

information on probability distribution of J and X,
determines the following inequalities for x belonging
to the rule-defined region D

(k)
i ⊂ X :

p(k)
i
≤ pi(x) ≤ p

(k)
i . (6)

Now our purpose is to construct the recognition
algorithm

ψSR(x) = i, (7)
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which uses information provided by the learning set
S and the set of expert rules R to classify a pattern on
the basis of its features x.

3 Combined Classifier
For the problem in question, one obvious and con-
ceptually simple method is to construct estimates p̂j

and θ̂j of unknown parameters pj and θj (j ∈ M)
from available data and next to use them in the opti-
mal Bayes algorithm (1) as though they were correct.
In other words, we consult an expert (or experts) and
have access to a database of examples observed in the
past, to try to reconstruct Bayes classifier ψ∗. This
idea leads to the following combined classifier:

ψSR(x) = i if p̂ifi(x; θ̂i) = max
k∈M

p̂kfk(x; θ̂k). (8)

The task of parameter estimation is a classical one
in statistics and it can be approached in several meth-
ods. In problem at hand, the estimation of the prior
probabilities yields no serious difficulties and usually
is performed according to the following formula:

p̂i =
Ni

N
, i ∈M. (9)

The main question is how to utilize the informa-
tion contained in the sets S and R to obtain good es-
timates for the unknown parameters θ1, θ2, ..., θM as-
sociated with each class. To solve this problem we
propose to apply on the base of set S the maximum
likelihood (ML) method which additionally respects
constraints provided by the set R.

Applying this approach for ith class (i ∈ M),
one must first determine the joint CPDF of data set Si,
which expressed as a function of unknown parameters
θi is called the likelihood function. Under adopted as-
sumptions (see decsription of learning set in the previ-
ous section) the likelihood function can be determined
as follows ([16]):

Li(θi) = f(Si; θi) =
Ni∏

n=1

fi(xin; θi) (10)

Since the ML estimate is ,,the most likely“ value
given the observed data, in the next step of ML proce-
dure we maximize the likelihood function with respect
to parameter vector θi. Feasible domain of solutions
is determined by the set of inequalities provided by
set R, which from (2), (6) and (9) can be explicitly
expressed as follows:

p(k)
i
≤

Ni
N fi(x; θi)∑M

n=1
Nn
N fn(x; θn)

≤ p
(k)
i , (11)

x ∈ D
(k)
i , k = 1, 2, ...,Ki.

Thus, the problem of construction classifier (7),
i.e. combined learning procedure on the base of learn-
ing set and expert rules is equivalent to the solution
of the constrained global (nonlinear in general case)
optimization problem of the form:

Find θ̂i such that Li(θ̂i) =

= max
θi

Li(θi) subject to (11), i ∈M. (12)

Unfortunately let us note that, though optimiza-
tion problems are formulated separately for each class
(for each parameter vector θi), constraints involve si-
multaneously all unknown parameters θ1, θ2, ..., θM ,
which causes optimization problems (12) mutually
dependent. This fact justifies considertion of opti-
mization problem with common objective function,
which according to the concept of weighting method
[15], we adopt as the sum of likelihood functions for
particular tasks, i.e. L(θ) =

∑
i∈M Li(θi) , where

θ = (θ1, θ2..., θM ). Thus, we shall reformulate (12)
as follows:

Find θ̂ such that L(θ̂) = max
θ

L(θ) subject to (11).

(13)
To find solution of (13) we can use the Kuhn-

Tucker conditions for the nonlinear problem with in-
equality constraints [15]. Unfortunately, in general
case, the set of feasible solutions determined by the
inequalities (11) does not need be convex set. This
observation provides serious difficulties in obtaining
solution, even in quite simple cases.

In next section we present several examples
which illustrate various cases of expert rules leading
to the different forms of sets of feasible solutions. Ob-
tained results make possible to assess usefulness of
additional knowledge in the form of expert rules in
the problem of estimation of unknown parameters of
probability distribution.

4 Numerical Examples
Let us consider two-class pattern recognition task.
Scalar feature has normal distribution in both classes,
i.e.:

f1(x) ∼ N(m1, σ1), f2(x) ∼ N(m2, σ2). (14)
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We assume σ1 = σ2 = 1 and mean values are un-
known parameters, i.e. θ1 = m1 and θ2 = m2. In or-
der to generate learning set (3) we assumed N = 15,
m1 = 0,m2 = 1 and p1 = 2/3. Using random
numbers generator in Maple 10 environment we re-
ceived the following learning patterns from the first
and the second class, respectively: S1 = {0.853,
-0.591, 0.578, 0.226, 0.723, -0.809, -0.516, 0.098,
0.514, 1.064} and S2 = {0.185, 0.203, 1.117, 2.109,
0.374}.

First, we use learning set as a random sample to
the estimation of unknown mean values. The ML
method without constraints leads to the following re-
sults:

m̂1 = 0.214, m̂2 = 0.797. (15)

The course of likelihood functions is depicted in
Fig.1. Let us note that L1 and L2 are unimodal func-
tions - this property will be utilized in further exam-
ples.

a b
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Figure 1: The course of likelihood function L1(m1)
(a) and L2(m2) (b)

Now we discuss the case when both learning set
and set of expert rules are available. Let us start from
the simplest case in which the set R contains one rule
only with rule-defined region equal to one-point set,
i.e. D = x0 Without any loss of generality, we sup-
pose that rule is connected with the first class. Thus
now, inequalities (6) reduce to the form

p ≤ p1(x0) ≤ p. (16)

Hence and from (14), after simple calculations we get
the following constraints (11):

2ln(
p

1− p
· 1− p1

p1
) ≤ (x0 −m2)2 − (x0 −m1)2 ≤

≤ 2ln(
p

1− p
· 1− p1

p1
). (17)

The above two inequalities determine in the space
R2 set of feasible solutions of (13), which shape and

size strictly depends on values of bounds p, p and ac-
curacy of determining posterior probability in rule
∆ = p − p. Some examples for values p = 0.5, p =
0.9,∆ = 0.4 (solid line), p = 0.67, p = 0.85,∆ =
0.18 (dash line) and p = 0.7, p = 0.8, ∆ = 0.1 (dot
line) are depicted in Fig.2a. In next examples we re-
strict the space of feasible solutions to the case of pos-
itive values of m2.
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Figure 2: Illustration of example (details in the text)

Fig.2b. presents the sets of feasible solutions de-
termined by one point-rule with x0 = 0 for two cases
of bounds and accuracy: p = 0.75, p = 0.8, ∆ = 0.05
(solid line) and p = 0.76, p = 0.78,∆ = 0.02 (dash
line). The objective function is visible in the form of
elipsoid contourlines.

As alternative we apply approximate method of
solution search, which does not guarantee the opti-
mal solution. The idea is very simple and does not
yield any conceptual and technical problems. In this
method, if result of ML method (without constraints)
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Table 1: Results of estimation of mean values for dif-
ferent cases and methods (Abbreviations: WCM - ML
method without constraints, 1PRw(n) - one point-rule
(wide)(narrow), 2(3)PR - two (three) one-point rules,
1(2)IR - one (two) interval rule(s))

Method Optimal Solution Suboptimal Solution

m̂1 m̂2 Q m̂1 m̂2 Q

WCM 0.214 0.797 0.417 - - -
1PRw 0.192 0.920 0.272 0.214 0.926 0.288
1PRn 0.186 0.977 0.209 0.214 0.982 0.232
2PR 0.131 0.948 0.183 0.214 1.002 0.216
3PR 0.095 0.926 0.169 - - -
1IR 0.222 0.861 0.361 0.214 0.862 0.352
2IR 0.163 0.965 0.198 0.214 0.984 0.230

is situated outside of the set of feasible solutions,
one value of parametr estimator (say m̂1) remains un-
changed, however we vary the second one so as to
reach the nearest constraint (see properties of likeli-
hood functions).

In the next two cases, to point-rule in x0 = 0 with
p = 0.75, p = 0.8, ∆ = 0.05 we add the second one
in x0 = −1.3 with p = 0.9, p = 0.95, ∆ = 0.05 and
the third rule in the point x0 = 0.6 with p = 0.6, p =
0.65, ∆ = 0.05. The sets of feasible solution deter-
mined by these two and three point-rules, their loca-
tions relative to objective function and solutions given
by the optimal and suboptimal methods are presented
in Fig.2c and Fig.2d, respectively.

In the further examples we consider the case of
expert rules with rule-defined region equal to inter-
val on R, i.e. D = [a, b]. Since in the example at
hand, posterior probability of the first class is decreas-
ing function, it is obvious that constraints (6) reduce
to the two following inequalities:

p ≤ p1(b), p1(a) ≤ p, (18)

which explicitly determine the set of feasible solutions
of (13).

Results for one rule (D = [0.1, 0.3], p = 0.7, p =
0.75, ∆ = 0.05) and for the case with added the sec-
ond rule (D = [−0.5,−0.3], p = 0.8, p = 0.85, ∆ =
0.05) are depicted in the Fig.2e and Fig 2f, respec-
tively.

Estimators of mean values for all examples are
presented in Table 1. For each pair of estimators
(m̂1, m̂2) additionally an error Q was calculated:

Q =| m1 − m̂1 | + | m2 − m̂2 |, (19)

which evaluates the quality of estimate and allows to

compare obtained results for different cases and esti-
mation procedures.

These results and values of criterion Q imply the
following conclusions:

1. The ML method without constraints (WCM) is
worse than those that used additional informa-
tion contained in expert rules, even for subop-
timal approach. This confirms the effectiveness
and usefulness of the conceptions and procedure
construction principles presented above for the
needs of parametric pattern recognition.

2. Results of method with one point-rule strictly de-
pend on the accuracy ∆ of determining posterior
probability in rule. Less value of ∆ causes less
value of Q, i.e. we obtain the better result.

3. There occurs a common effect within each kind
of rules group (point-rule and interval-rule) and
for both methods: bigger number of rules causes
the better estimation.

4. Although the optimal algorithm yields always
better results than suboptimal one, in many cases
there are no essential difference between both
methods. This fact allows to consider subopti-
mal approach as an interesting alternative in the
optimization problem in question. We must re-
member however, that suboptimal approach not
always leads to the constructive results (see e.g.
case 3PR).

5 Conclusion
This paper presents probabilistic approach to the com-
binig of learning set and the set of IF-THEN rules for
the parametric case. In proposed concept of input data
fusion, both sets are treated as sources of information
on unknown parameters, which - in a natural way -
leads to the modified ML method of parametr estima-
tion. In proposed procedure, on the base of learning
set the likelihood function is formulated, and next it is
maximized taking into account constraints provided
by the set of rules.

We have considered a series of numerical exam-
ples with computer generated data for several cases
which differ in form and number of rules. For each
example two optimization procedures were employed
to obtain estimators of unknown parameters. Further-
more, for each solution the estimation error, i.e. dis-
tance between values of estimator and parametr was
calculated. The ranking of procedures and cases can-
not be treated as one having the ultimate character
because the scope of numerical examples warns us
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against its uncritical use. However, although the out-
come may be different for other tasks, the presented
examples demonstrate the usefulness of information
contained in expert rules and may suggest some per-
spectives for practical applications.
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