
Intelligent Power Quality Monitoring by using S-Transform and  
Neural Network 

 
ALI DASTFAN, A. SHANTIAEE ZADEH 

Department of Electrical & Robotic Engineering 
Shahrood University of Technology 

Shahrood, IRAN 
dastfan@ieee.org 

 
 

Abstract: - In this paper a method in intelligent monitoring of the power quality events is presented. The main 
objectives are the identification and classification of these events. A method for classification is used based on 
the combination of S-transform and neural networks. The S-transform, which is based on the wavelet transform 
with a phase correction, provides frequency dependent resolutions that simultaneously localize the real and 
imaginary spectra. Neural network configurations are trained with features from the S-transform for 
recognizing the waveform class. The whole method is tested over a variety of power network disturbance 
signals and their combinations which are created by EMTP simulations in a 34 bus IEEE standard network. The 
classification accuracy for these events is given and shows that proposed method is doing well in detecting and 
classifying these types of disturbances. 
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1   Introduction 
During last decade, the increasing use of equipment 
sensitive to power system disturbances and their 
related economic aspects, have created power quality 
monitoring a common practice for utilities. Utilities 
try to meet the demands of their customers by 
monitoring the power quality to prove that the 
quality of the offered power is within the specified 
standards. A reliable identification of the 
disturbances enables the utilities to locate the source 
of the problems that might occur. Other important 
aspect of power quality monitoring is the collection 
of information regarding the performance of the 
power system.  
     To monitor electrical power quality disturbance, 
short time discrete Fourier transform (STFT) is most 
often used. This transform has been successfully 
used for stationary signals where properties of 
signals do not evolve in time. For nonstationary 
signals, the STFT does not track the signal dynamics 
properly due to the limitations of a fixed window 
width.  Thus, STFT cannot be used successfully to 
analyze transient signals comprising both high- and 
low-frequency components.  
     On the other hand, wavelet analysis provides a 
unified framework for monitoring power quality 
problems and has been used in power quality 
analysis [1]-[3]. The wavelet transform (WT), like 
the Short Time Fourier Transform (STFT), provides 
an understandable transient signal representation 

corresponding to a time-frequency plane. This plane 
gives time and frequency information relating to the 
analyzed signal. Unlike STFT, the length of the 
smoothing window of the WT depends on the 
frequency analyzed: long windows are used at low 
frequencies, and short windows at high frequencies 
[3]. Therefore, the WT leads to relatively accurate 
frequency resolution and poor time location at low 
frequency. The WT also provides accurate time 
location and bad frequency resolution at high 
frequency. This characteristic is appropriate for real 
signals such as voltage sags and transient 
overvoltages. Time-frequency planes are also 
meaningful signatures of each kind of disturbances 
providing time and frequency characteristics. 
     For pattern classification of a nonstationary time 
series like power quality disturbance signals, 
multiresolution analysis of the discrete wavelet 
transform (DWT) cannot yield easily distinguishable 
features and exact spectral contents and needs 
multiple neural networks resulting in high 
computational overhead [4]. The S-transform, on the 
other hand, produces a time-frequency representation 
of a time series. Furthermore, the S-transform can be 
derived from the continuous wavelet transform 
(CWT) choosing a specific mother wavelet and 
multiplying a phase correction factor [4], [5].  
     In this paper a method for automatically detecting 
and classifying various types of power quality events 
is presented. The method is based on S-transform 
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analysis and neural networks. The various power 
quality disturbance signals such as voltage sag, 
swell, interruption, impulsive, surge, notch, 
harmonics, voltage flicker and combination of these 
events has been considered for the S-transform 
analysis. These signals have been created by EMTP 
simulations in a 34 bus IEEE standard network.  
 
 
2   Basic Principles of Monitoring 
The S-Transform (ST) is an extension to the Gabor 
transform and WT and falls within the broad range 
of multiresolution spectral analysis, used with a 
translatable and scalable Gaussian window, where 
the standard deviation is an inverse function of the 
frequency, thus reducing the dimension of the 
transform. With the introduction of a dilation 
parameter, the localizing Gaussian function g(t) is 
defined as: [3]  
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The ST performs multiresolution analysis on the 
signal, because the width of its window varies 
inversely with the frequency. This gives high time 
resolution at high frequencies and high frequency 
resolutions at low frequencies. The width of the 
window has been chosen to be proportional to the 
period of the cosinusoid being localized as follow: 
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It is clear that the zero frequency of the ST is 
identically equal to zero for this definition of ( )fσ . 
This adds no information. Therefore, ( )fS ,τ  is 
defined as independent of time and is equal to the 
average of the function h(t). For the discrete ST, h(t) 
can be written in discrete form as h[kt], where k 
varies from 0 to N-1 and is known as discrete time 
series of the signal h(t). Discrete Fourier transform 
of the time series h[kt]can be expressed as: 
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Where n=0,1,2,3,…, N-1 and the inverse discrete 
fourier transform is: 
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The ST in discrete case is the projection of the vector 
defined by the time series h[kt] onto a spanning set 
of vectors. Since spanning vectors are not orthogonal 
and the elements of S matrix are not dependent, each 
basis vector is divided into N localized vectors by an 
element by element product with shifted Gaussians, 
such that sum of these N localized vectors is the 
original basis vector. The ST of the discrete time 
series h[kt] is given by: 
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The computation of the ST is efficiently 
implemented using the convolution theorem and 
FFT. The following steps are used for the 
computation of ST. 

i) Denote n/NT, m/NT, KT and jT as n, m, k and j 
respectively, for the evaluation of ST. 

ii) Compute the DFT of the signal h(t) using FFT 
software routine and shift spectrum H[m] to 
H[m+n]. 

iii) Compute the Gaussian window function for the 
required frequency n. 

iv) Compute the inverse Fourier transform of the 
product of DFT and Gaussian window function 
to give the ST matrix. 

 
The output of the ST is an n×m matrix whose rows 
pertain to frequency and columns indicate time. Each 
column thus represents the local spectrum for that 
point in time. From the ST matrix, we obtain the 
frequency-time contours having the same amplitude 
spectrum and these contours can be used to visually 
classify the nature of the disturbance event. A three-
dimensional (3-D) mesh of the S-transform output 
yields frequency-time, amplitude-time, and 
frequency-amplitude plots. The original software 
code developed in Matlab for power quality 
waveform studies.  
     The nature of this disturbance can be classified by 
obtaining a few simple features such as standard 
deviation and amplitude factors. After that, an 
automated disturbance recognition system based on 
neural networks classifier has been used. In this 
stage, eleven back-propagation neural network based 
pattern recognition system is used to classify the 
various disturbance waveforms. Fig. 1 shows 
flowchart of complete process of detection and 
classification of power quality events. 
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Fig. 2: IEEE 34 bus standard network 
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3    S-Transform of Power Quality 
Events 
In order to test the proposed PQ monitoring system, 
different types of PQ events has been produced by 
EMTP simulation in IEEE 34 bus standard system 
which is shown in Fig. 2. These events are based on 

IEEE1159 standard definitions and listed as follow: 
1. Flicker which has been simulated by connecting 

an arc furnace. 
2. Harmonics has been simulated by connecting an 

adjustable speed drive 
3. Interrupt has been simulated by a solid three 

phase short circuit close to the measuring point 
4. Voltage sags has been simulated by connecting a 

large load 
5. Voltage swell has been simulated by 

disconnecting a large load from system 
6. Impulse has been simulated by using Hydler 

model which based on voltages are defined as: 
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7. Surge has been simulated by switching a large 
capacitor in the system 

8. Notch has been simulated by connecting a three 
phase rectifier with a highly inductive load 

     In this paper three different combinations of PQ 
events has been considered. These events are:  

9. Flicker and harmonic  
10. Harmonic and Sags  
11. Flicker and sags  
 
To illustrate the use of S-transform for detecting 
power quality events, the simulated signals are 
sampled with 2 KHz sampling rates. Fig. 3 shows a 
voltage waveform with harmonic and flicker which 
has been generated with EMTP. 
     The 3-D meshes for the signal shown in Fig. 3 are 
shown in Fig. 4. From the 3-D plot, the magnitude, 
frequency, and time information of the event can be 
detected. Three contours of frequency-time and 
magnitude-frequency and magnitude-time are shown 
in Fig. 5. In all of the plots, the frequency magnitude 
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Fig. 1 Flowchart of PQ event monitoring 

Proceedings of the 7th WSEAS International Conference on Power Systems, Beijing, China, September 15-17, 2007      182



is normalized with respect to the sampling frequency 
and is given by f/fmax. The frequency-time contour of 
the PQ disturbances clearly reveals the nature of the 
disturbances. For example, Fig. 5(a) presents the 
actual signal showing harmonics contents of the 
signal. In Fig. 5(b), the normalized time-frequency 
contour obtained from S-transform is shown. This 
contour gives the maximum output of the normalized 
frequency-time graph. Fig. 5(c) gives the magnitude-
time spectrum obtained by searching rows of S-
transform matrix. This figure clearly shows the 
voltage amplitude changes which is due to flicker 
and the time of its occurrence. 
From these results, it is quite obvious that in case of 
S-transform output, one can detect, localize, and 
quantify the disturbance completely. However, the 
wavelet transform alone cannot give all of the 
information which is extracted from the S-transform 
and requires the use of Fourier transform for 
quantifications of the signal magnitude, total 
harmonic distortions, etc [3]. The frequency-time 
contours of the S-transform output shows a decrease 
or increase in magnitude for voltage which provides 
a better visual classification strategy in comparison 

to the wavelet transform (similar to time versus rms 
or peak value of voltage). The magnitude versus time 
graph quantifies the voltage.  
In analyzing oscillatory transients, voltage impulses, 
etc., it will be useful to get S-transform output for 
another window width. The S-transform output at 
different frequency yields some more parameters for 
discriminating various types of transient 
disturbances. For instant Fig. 6 shows oscillatory 
transient waveform and it lasts for short time 
duration. These transients can be categorized into 
several groups like impulsive, notched, or 
oscillatory. Figs. 7 show 3-D presentation of voltage-
time-frequency created by S–transform. These 

     

 
Fig. 3: Voltage waveform with harmonics and flicker 

 

 
Fig. 4: The 3-D presentation of voltage-time-frequency of 

the waveform in Fig. 3  
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Fig. 5: Contours of the 3-D mesh shown in Fig. 4      (a) 
frequency-time contour (b) magnitude-frequency 

contour (c) magnitude-time contour 
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contours clearly show power quality transients 
patterns suitable for classifying these events. 
 
 
4   PQ DISTURBANCE 
RECOGNITION SYSTEM 
Power quality disturbance recognition involves a 
broad range of disturbance categories and varying 
degree of irregularities. Description of PQ events 
considered for recognition is outlined in the previous 
section. The generalized S-transform generates the 
time frequency contours, which clearly display the 
disturbance pattern for visual inspection. As the S–
transform provides us a time-frequency 
representation (TFR) of the signal with frequency 
dependent resolution, the standard deviation of the 
TFR curve is taken as a measure to classify these 
signals. It is observed that for a pure sinusoid, the 
standard deviation curve is linear over the entire 
range (this value is taken as a reference), where for 
the sags, the standard deviation falls below this 
reference value and rises above the reference for the 
swells. We have set this reference, as a boundary. 
The standard deviation above this represent voltage 
swell and the standard deviation below it represent 
voltage sag. It is observed that during the test for 

different percentages of sag or swell, there is a 
proportionate decrease or increase in the standard 
deviation above the reference. Further, it is to be 
noted that the FFT used in the S–transform 
calculation provides both the amplitude and 
frequency components of the signal. 
     For classifying both steady-state and transient 
disturbances, standard deviations at two different 
Gaussian window widths (k=1, and k=5) are taken 
and an amplitude factor is determined from the S–
transform matrix. These features have been used in a 
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Fig. 8: Contours of the 3-D meshes shown in Fig. 7    
(a) frequency-time contour (b) magnitude-frequency

contour (c) magnitude-time contour 
 

 
Fig. 6: High frequency oscillatory voltage 

f/fmax 

v 

Time(s) 

 
Fig. 7: The 3-D presentation of magnitude-time-

frequency of the waveform in Fig. 6 
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back-propagation multilayered neural network to 
provide classification of the power quality events.  
     A general form of the proposed method includes a 
unit, as shown in Fig. 1, to identify the presence of a 
disturbance as well as to detect any signal 
interruption. This part is also used to detect the 
presence of harmonics in low-frequency 
disturbances. The recognition system has 11 units 
and each unit is a four-layer back-propagation neural 
network to learn the feature vectors. By try and error 
the number of neurons in the hidden layer has been 
found in such a way to give the best results. For a 
particular class of signal, the unit corresponding to 
that class should ideally exhibit an output of one 
while the other neurons exhibit an output of zero. 
The log-sigmoid transfer function was chosen 
because of its output range (0–1) is perfect for 
learning to output Boolean values. A processing unit 
is added to select the unit(s) with the highest 
excitation as the class of the signal. 
     Table 1 shows the accuracy of detection and 
classification of power quality events when network 
is trained for 1000 and 2000 epochs. These results 
show that the proposed method is doing very well in 
detecting and classifying these types of disturbances. 

4   Conclusion 
In this paper, the S-transform and neural network has 
been used to monitor power quality disturbances in a 
power system. The S-transform is used to generate 
contours and feature vectors for pattern 
classifications. It is shown that the proposed system 
provides a complete characterization of both steady 
state and transient PQ signals by using neural 
network based decision system. The method is 
applied on 11 sets of power quality events, which 
obtained from EMTP computer simulations, and 
accurate results are obtained.  
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Table 1: Accuracy of detection and classification of PQ 
events 

Accuracy with 
2000 epochs 

Accuracy with 
1000 epochs PQ Events 

99.5% 99% Flicker 
98% 97% Harmonics 
99% 97% Interrupt 

98.5% 97.5% Voltage sags 
99.5% 98.5% Voltage swell 
99% 98% Impulse 

99.5% 98% Surge 
99% 97% Notch 
97% 96% Flicker and 

harmonic 
98.5% 97% Harmonic and 

Sags 
97% 95% Flicker and 

sags 
98.5% 97.20% TOTAL 
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