

Mining Long High Utility Itemsets in Transaction Databases

GUANGZHU YU
1
 , SHIHUANG SHAO

1
, DAOQING SUN

1
 and BIN LUO

2

1
 Information and Technology College, DongHua University, ShangHai, CHINA

2
 Automation College, Guangdong University of Technology, Guangzhou, CHINA

ygz@mail.dhu.edu.cn, shshao@dhu.edu.cn

Abstract: Although support has been used as a fundamental measure to determine the statistical importance of

an itemset, it can’t express other richer information such as quantity sold, unit profit, or other numerical

attributes. To overcome the shortcoming, utility is used to measure the semantic importance and several

algorithms for utility mining have been proposed. However, existing algorithms for utility mining adopt an

Apriori-like candidate set generation-and-test approach，，，，and are inadequate on databases with long patterns. To

solve the problem, this paper proposes a hybrid model and a novel algorithm, i.e., inter-transaction, to discover

high utility itemsets from two directions: existing algorithms such as UMining [1] seeks short high utility

itemsets from bottom, while inter-transaction seeks long high utility itemsets from top. To avoid the costly

process of extending short itemsets step by step, inter-transaction find long itemsets directly by intersecting

relevant transactions. Experiments on synthetic data show that the new algorithm achieves high performance,

especially in high dimension data set.

Key-Words: utility; long high utility itemset; intersection transaction; partition; hybrid model

1 Introduction

Traditional association rule mining (ARM) aims to

find all itemsets that have support above a user

defined threshold. It treat all the items equally by

assuming that the utility of each item is always 1

(item is present) or 0 (item is absent). Under this

kind of model, a wholesale of an itemset is treated in

the same way as a small sale: corresponding support

is added by one. Obviously, it’s unrealistic and will

lead to some useful pattern missed. For example, in a

transaction database, there are 1000 sale records of

milk which occupy 10% of the total transaction

number, contributing 1% of the total profit. On the

other hand, there are 600 sale records of birthday

cake that occupy 6% of the total number,

contributing 5% of the total profit. If the support

threshold is 8%, according to traditional mining

algorithm for finding frequent itemsets, milk will be

reported as a frequent item and birthday cake will be

ignored. But in fact, the market professional must be

more interesting to birthday cake because it

contributes a larger portion to total profit than milk.

The example shows that support is not sufficient to

reflect user’s interestingness.

According to Expectancy Theory [2], we have

the well-known equation “motivation=probability *

utility”, which says motivation is determined by the

utility of making a decision and the probability of

success. In many fields such as retailing, web log

technique, users are not only interested in the

frequency of occurrence of an itemset (support), but

also their utility. So a decision-oriented ARM

algorithm should output both the support and the

utility of all interesting patterns. For this reason,

utility based ARM has been proposed to discover all

itemsets in a database with utility values higher than

a user specified threshold.

 Table 1 is an example of a simplified

transaction database where the total utility value is

162. The number in each transaction in table 1 is the

sales profit of each item. if s(X) and u(X) represent

the support and utility of itemset X respectively, then

u(A,B)=43, s(A,B)=5, u(A,B,C)=54, s(A,B,C)=3,

u(A,B,C,D)= 45, s(A,B,C,D)=2, u(A,B,C,D,E)=57,

s(A,B,C,D,E)=2.

 A B C D E

T1 0 0 5 0 1

T2 2 3 0 0 0

T3 3 5 15 7 4

T4 0 0 4 7 2

T5 4 5 8 0 0

T6 9 4 0 0 2

T7 6 0 8 3 6

T8 0 0 0 6 3

T9 3 0 0 9 5

T10 3 5 6 1 8

Table1. A transaction database

If support threshold is 0.3 and utility threshold is

50, {A,B} is a frequent but not a high utility itemset,

{A,B,C} is both a frequent and high utility itemset,

{A,B,C,D} is neither a frequent nor high utility

itemset and {A,B,C,D,E} is a high utility but

non-frequent itemset.

From above example, we can draw a conclusion:

downward closure property, which states if an

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 325

itemset is frequent by support, then all its nonempty

subsets must also be frequent by support, doesn’t

apply to utility mining. Relevant studies have shown

that utility constraint is neither anti-monotone nor

monotone nor succinct nor convertible [3] [4].

Because of this property, most algorithms for

frequent pattern mining can’t be used to find high

utility itemsets.

Furthermore, all existing algorithms for utility

mining are Apriori-like algorithms. They employ a

bottom-up, breadth-first search, iteratively generate

candidate (k+1)-itemsets from k-itemsets and are

inadequate on datasets with long patterns. To the best

of our knowledge, there is no efficient algorithm for

mining long high utility itemsets by far. To solve the

problem, we propose a hybrid top-down/bottom-up

search model and a partitioning-based algorithm, i.e.

inter-transaction. Under the hybrid model, existing

algorithm such as two-phase searches the short high

utility itemsets in a bottom-up manner, while

inter-transaction searches long high utility itemsets in

a top-down manner, they complement each other.

Inter-transaction is based on the fact that long

transactions usually have few common items, which

means the intersection of multiple long transactions

is usually very short. Since existing algorithms are

efficient for short itemsets, we emphasize on

introducing the inter-transaction.

The remainder of the paper is organized as

follows: section 2 overviews related work, section 3

formally defines relevant terms and notations;

section 4 introduces the new algorithm. In section 5,

experimental results are presented and in section 6,

we summarize our work.

2 related work
Lots of researches have been conducted to improve

the usefulness of traditional ARM, but most of them

are utility-related, not utility-based. Value added

association rules [5] [6] extends traditional

association rules by taking into consideration

semantics of data. The difference between [5] and [6]

is that price and quantity of supermarket sales are

considered in the former, while the later try to attach

a value to every item in the database and use the

added values to rank association rule. Quantitative

association rules mining [7] [8] introduce statistical

inference theory into data mining field to find

extraordinary and therefore interesting phenomena in

database.

Weighted association rules gives up treating all

the items and all the transactions uniformly by

assigning different weights to items [9] or

transactions [10]. These weights essentially reflect

users’ preferences. [10] also proposed a mixed

weighted association rules model, which incorporate

both vertical weighted association rules and

horizontal weighted association rules.

Shen Y. D. proposed an objective-oriented

apriori (OOApriori) model [3]. He puts utility

constraint into apriori algorithm so that some

frequent high utility itemsets could be found. Chan

R. et al. also proposed a utility mining algorithm to

mine top-k frequent high utility closed patterns [11].

To reduce search space, he developed a new pruning

strategy based on a weaker but anti-monotonic

condition to prune low utility itemsets.

Barber B. uses itemset share as a measure to

overcome the shortcoming of support [12]. Item

share is defined as a fraction of some numerical

values. It can reflect the impact of the sales quantities

of items on the cost or profit of an itemset, it should

be regarded as a utility.

A formal definition of utility mining and

theoretical model were proposed by Yao H [1] [13].

In his UMining algorithm, utility upper bound

property is used to reduce the size of candidate set.

In order to narrow search space furthermore, support

upper bound property is used in a heuristics model to

predict whether an itemset should be added into the

candidate set. Unfortunately, the heuristics mode

can’t guarantee an accurate prediction. Yao H also

summarized the mathematic properties of utility

constraint in [4]. Liu Y. proposed a two-phase

algorithm to mine high utility itemsets [14]. In Liu’s

model, transaction weighted downward closure

property is used to reduce search space.

3 definitions
Utility of an itemset is a subjective term dependent

on user and application; it could be measured in

terms of profit, cost, risk, aesthetic value or other

expressions of user preference. For easy understand,

we refer to utility of an itemset as the economic

utility such as sales profit.

Let I={i1, i2, …, im} be a set of items, D={T1,

T2, …, Tn} be a transaction database. Each

transaction Tq in database D (DTq∈) is a subset of I,

i.e., ITq ⊆ . To simplify notation, we sometimes

write a set { i1, i2, …, ik } as i1 i2 … ik. Adapting from

the notations described in [1], [14] and [15], we have

following definitions:

Definition1. The transaction utility of item x in

transaction Tq, denoted)T,x(u q , is the utility

brought on by item x when transaction Tq occur.

Take example for table 1, u(A,1)=0, u(A,2)=2.

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 326

Definition 2. The transaction utility of itemset X in

transaction Tq, denoted)T,X(u q , is the sum of

transaction utility of item x contained in X, i.e.,

∑
⊆∧∈

=
qx TXX

qq (1))T,x(u)T,(Xu

For example, in table 1, u(AB,2)= u(A,2)+ u(B,2) =5,

u(ABC,5)= u(A,5)+u(B,5)+u(C,5) =4+5+8=17.
Definition 3. The partition utility of itemset X in

partition Pi , denoted)P,X(u i , is the sum of the

transaction utility of itemset X in partition Pi, i.e.,

(2))T,X(u),(
qiq TXPT

q∑
⊆∧∈

=iPXu .

For more details about partitions, refer to [15].

Definition 4. The utility of X in database,

denoted)X(u , is the sum of transaction utility of

itemset X in database, i.e.,

)3()T,X(u

)P,X(u)(

qq

iiqq

TXDT

q

DPPTTX

i

∑

∑

⊆∧∈

⊆∧∈∧⊆

=

=Xu

Examples can be seen in section 1.

Definition 5. The utility of transaction Tq, denoted

)T(u q , is the sum of transaction utility of item x in

transaction Tq, i.e.,

)4()T,x(u)(
qTx

qq ∑
∈

=Tu

Definition 6. Transaction identifier list, denoted

tidlist, is a set of transaction ID.

Definition 7. Intersection transaction, denoted

T(tidlist), is an itemset obtained by the intersection

of transactions listed in tidlist. For example, let

T1=ABDF, T2=ADFG, then intersection transaction

T(1,2)=T1∩T2=ADF, corresponding tidlist is {1,2}.

If |tidlist|=k, T(tidlist) is also called k-intersection

transaction, k is called the current support of

k-intersection transaction. Pay attention to the

difference between current support k and support s.

the support of an itemset is the maximal number of

transactions containing the itemset, while current

support is the number of parts of the transactions.

Definition 8. A long transaction is the transaction

that includes more than minlen items. minlen is a

user defined value. Otherwise, called short

transaction.

Definition 9. A high utility itemset is the itemset

with utility value higher than a user specified

threshold, i.e., minutil. Otherwise, we say the itemset

is low.

Definition 10. A long high utility itemset is the high

utility itemset with length longer than minlen.

Definition 11. A locally high utility itemset is an

itemset in partition pi with partition utility value

higher than the local utility threshold minutil/n. n is

the partition number.

4 Inter-transaction algorithm
As we know, each itemset is determined either by a

transaction or by a group of transactions. If we let

any two transactions intersect each other, we can

obtain all itemsets (2-intersection transactions) with

support higher than 2. Similarly, we can obtain all

itemsets (k-intersection transactions) with support

higher than k by intersecting any k transactions

(1≤k≤N, N is the number of transactions).

Theoretically, we can obtain all itemsets by

intersecting relevant transactions.

In real database, transaction number N can

easily reach to several millions and there will be 2
N

intersection transactions at the worst situation! To

solve the problem, two methods are used in our

algorithm. One is to divide database into multiple

partitions with each partition containing fitting

amount of transactions, then build a global candidate

set from locally high utility itemsets, and finally test

the entire candidate set, just like that described in

[15]. The correctness of the partition method is

guaranteed by following lemma:

Lemma suppose D is a transaction database,

P=P1P2, …, Pj is a set of partitions of D. If IX ⊆ is

a high utility itemset, it appears as a locally high

utility itemset in at least one of the partitions.

Proof. Let X be a high utility itemset, then u(X)

≥minutil. Divide D into n partitions, then X may fall

into m partitions (1 ≤ m ≤ n). Assume

B=Max(u(X,Pi)) denote the biggest utility value of X

in all partitions, By definition 4, we have

mB)P,X(u)X(u
DPPTTX

i

iiqq

≤= ∑
⊆∧∈∧⊆

If
n

minutil
B < , then

 minutilminutil
n

m
)X(u ≤<

But this is a contradiction.

Another method is to filter out all short

(intersection) transactions. The rational behind the

method is that short transactions have no effect on

the support and utility of long itemsets. Since the

intersection of long transactions is usually very short,

large amount of short intersection transactions will

be pruned out in time. This is why our method is so

efficient for long patterns.

But how should we choose the number of

partitions? Let u be total utility value, and coefficient

a be the minimum acceptable ratio of the utility

value of an itemset to the total utility value in the

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 327

database. Suppose we divide the database D into n

partitions, the local utility threshold

(
nn

minutil ua ∗
=) should be far larger than the

average transaction utility (
N

u
), denoted

as
N

u

n

u
>>

∗α
. Otherwise, large amount of locally

high utility itemsets would be generated. Let S be

partition size, we have:

(5)
1

an

N
S >>=

Inequation (5) contradicts the goal of partition

method (reducing the amount of intersection

transaction in a partition). Experiments show that it’s

applicable for S to be between
a

5 and
a

10 in the

context of our datasets.

Inter-transaction can be described as follows:

Input: A transaction database D, minutil, minlen

Output: All long high utility itemsets.

Method:

1. Divide database D into n partitions;

2. For every partition Pi∈D, call Subroutine

gen-LHU-itemsets to obtain all locally long high

utility itemsets;

3. Obtain a candidate set C by union of all locally

long high utility itemsets;

4. Scan the database again to calculate the utility

and support of each itemset c∈C. if utility value

c.utility≥minstil, output its utility and support;

The algorithm is very similar to partition

algorithm [15], one of the main differences between

them is that the former seeks balance between

keeping a higher local utility threshold and reducing

the amount of intersection operation, while the later

choose partition size in terms of main memory size,

such that at least those itemsets and other

information that are used for generating candidates

can fit in main memory.

Gen-LHU-itemsets is responsible for generating

locally long high utility itemsets in a partition. In the

subroutine, tidlist is used to record which

transactions are involved in an intersection

transaction. If s(T(tidlist)) and u(T(tidlist)) represent

the current support and utility of T(tidlist)

respectively, T(tidlist).tidlist represents transaction

identifier list associated with T(tidlist), let tidlist=

tidlist1∪tidlist2 (tidlist1≠tidlist2), we have:

(6))T(tidlist2)T(tidlist1

 tidlist2)T(tidlist1 T(tidlist)

∩=

∪=

(7) tidlist2 tidlist1.tidlist T(tidlist) ∪== tidlist

(8) |tidlist2tidlist1|

|.tidlist T(tidlist) |t))s(T(tidlis

∪=

=

(9))),((tidlist)t),u(T(tidlis ∑
∈

=
tidlistTq

qTtidlistTu

To compute the utility of an itemset in a

k-intersection transaction, we assume all the

transactions listed in tidlist form a partition, so that

we can use equation (9) to compute the utility, which

stems from equation (2). The subroutine is described

as follows:

Input: A partition Pi, minutil, minlen

Output: All locally long high utility itemsets in Pi.

Method:

1. Take a partition Pi and calculate the utility of

each (intersection) transaction independently

according to equation (4) for individual

transaction or equation (9) for intersection

transaction. If u(Tq)≥ minutil/n, put Tq into

candidate set, call subroutine mine_single_trans;

2. Perform all the intersections of any two

(intersection) transactions;

3. If there is no long itemset, subroutine ends;

4. Prune out all short intersection transactions,

merge repetitious intersection transactions,

update corresponding tidlist according to

equation (7). go to step 1;

Subroutine mine_single_trans tries to discover

all locally long high utility itemsets an intersection

transaction contains. It can be described as follows:

Input: Tq, minutil, minlen

Output: All locally long high utility itemsets in Tq

Method:

1. Sort the transaction Tq decreasingly by its utility

value: Tq= t0 t1 t2 … tk-1 tk 。 。 。 tL-1,

satisfying))(T,t(u)T,t(u qq jiji ≤≥ ;

2. Let k=L-1;

3. p=0; // position of the first item of X in Tq

4. Let X=tptp+1…tp+k-1. if u(X) ≥minutil/n, add X

into candidate set, go to step 5, otherwise,

subroutine ends;

5. For j=1 to k do begin

6. Count=0；

7. For i=p to L-k-1 do begin

8. Replace tk-j in itemset X with tk+i，obtaining

a new itemset X’. If u(X’)≥minutil/n，add X’

into candidate set, count increases by one; if

u(X’)<minutil/n，break (exit loop)；

9. End；

10. If count=0，break；

11. End；

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 328

12. If there isn’t any high utility k-itemset,

subroutine ends; if all the k-itemsets verified in

step 8 are high utility itemsets，p increases by

one, go to step 4 until all the k-itemsets are

verified;

13. Let k=k-1, go to step 3, until k=minlen

The subroutine uses Quick Sort method to sort

the items descendingly by utility value so that we can

produce and check only necessary itemsets, pruning

out low utility itemsets as many as possible. Suppose

Yi=X∪ti, Yj=X∪tj, if i<j, then u(Yi) >u(Yj). if Yi is

low, Yj must be low. Furthermore, if all the

k-itemsets are low, all (k-l)-itemsets must be low

(1≤l≤k-1). Following example can show how

mine_single_trans works:

Let Tq=ABCDEF, corresponding utility values

are 6, 4, 5, 1, 3, 2. After sorting, Tq can be expressed

as ACBEFD, relevant utility values can be write as

U=654321. Here the length of Tq is 6, i.e., L=6. if

minutil=18, minlen=3, itemsets will be examined in

the order shown in table 2.

Itemset Utility comments

u(ACBEF)= 20 add ACBEF to Hi

u(ACBED)= 19 add ACBED to Hi

u(ACBFD)= 18 add ACBFD to Hi

u(ACEFD)= 17 stop finding 5-itemsets

u(ACBE) =18 add ACBE to Hi

u(ACBF) =17 stop finding 4-itemsets

u(ACB) =15 Algorithm end

Table2. The process of calculating utility

According to step 1) of gen-LHU-itemsets, only

a small amount of (intersection) transactions need to

call the subroutine and thus won’t cause high

computational cost.

5 Experimental results
All the experiments were performed on a 2GHz

XEON server with 2GB of memory, running

windows 2003. Program was coded in Delphi 7. The

synthetic databases used in our experiments are

T40.I30.D8000K with the number of items varying

from 0.5k to 4K, which were generated by IBM

quest data generator [16]. Because the generator only

generates the quantity of 0 or 1 for each item in a

transaction, we use Delphi function “RandG” to

generate random numbers with Gaussian distribution,

which mimic the quantity sold of an item in each

transaction.

Figure 1 shows that our algorithm scales linearly

with the number of transactions. Figure 2 shows the

performance when varying the number of items.

Different from other algorithms, the performance of

inter-transaction increases with the increase of the

number of items. In figure 3, minlen is the minimum

length of itemsets the algorithm can discover within

a reasonable time. The experiment result indicates

that the larger the number of items, the smaller the

minlen, and the less the tasks left for its cooperator

such as UMining. That’s to say, inter-transaction can

complete more works in a sparse dataset. Figure 4

shows the execution time decreases as the utility

threshold increases.

items=lk, a=0.01

0

1000

2000

3000

4000

5000

0 2 4 6 8 10

Number of Transaction(million)

E
x
e
c
u
t
i
o
n

T
i
m
e
(
s
e
c
.
)

Transactions=1M, a=0.01

0
500

1000
1500
2000
2500
3000
3500
4000

0 1 2 3 4 5

Number of items(K)

E
xe
c
ut
i
on

Ti
me
(
se
c
.)

Fig.1 Scalability with transaction number Fig.2 Scalability with item number

Transaction=1M, a=0.01

0

5

10

15

20

0 1 2 3 4 5

Number of Items(K)

M
i
n
l
e
n

Transaction=1M, Item=1K

0

200

400

600

800

1000

0 2 4 6

Minimun Threshold(%)

E
x
e
c
u
t
i
o
n

T
i
m
e
(
s
e
c
.
)

Fig.3 Effect of item number on minlen Fig.4 Scalability with threshold

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 329

6 conclusions
The paper decomposes the mining task into two parts

(mining long high utility itemsets and short high

utility itemsets) and emphasize on introducing a

partition-base, top-down algorithm, i.e.,

inter-transaction, to discover long high utility

itemsets. Besides the inherent advantages of partition

algorithm [15], the new algorithm can obtain long

itemsets directly from the intersection of relevant

long transactions, without extending short itemsets

step by step. In addition, new pruning strategies are

used to cut down search space. It is very suitable for

large high dimensional data.

Data skew, number of items and parameters

such as threshold minlen affect its performance. How

to choose threshold minlen is relevant to the hybrid

model, and it’s our future work.

References:

[1] Yao H. and Hamilton, H.J., Mining itemset

utilities from transaction databases, Data &

Knowledge Engineering, 59 , 2006, pp. 603 –

626

[2] V. H. Vroom, Work and Motivation, John Wiley,

1964

[3] Shen Y. D., Zhang Z. and Yang Q,

Objective-oriented utility-based association

mining, Proceedings of the 2002 IEEE

International Conference on Data Mining, 2002,

pp. 426-433

[4] Yao H. and Hamilton, H.J., A Unified

Framework for Utility Based Measures for

Mining Itemsets, Proceedings of the 2006

International Workshop on Utility-Based Data

Mining 2006, 28-37, Philadelphia, PA.

[5] K. Wang, S. Zhou, J. Han, Profit mining: from

patterns to action, Proceedings of International

Conference on Extending Database Technology,

2002, pp. 70-87

[6] Lin TY, Yao YY, Louie E. Mining Value Added

Association rules, Proceedings of PAKDD, 2002,

pp. 328-333.

[7] Aumann Y., Lindell Y. , A Statistical Theory for

Quantitative Association Rules, Journal of

Intelligent Information Systems, 20, 2003, pp.

255–283.

[8] Geoffrey I. Webb, Discovering associations

with numeric variables, Proceedings of the

seventh ACM SIGKDD international

conference on Knowledge discovery and data

mining, 2001, pp. 383-388

[9] C.H. Cai, Ada W.C. Fu, C.H. Cheng and W.W.

Kong, Mining Association Rules with Weighted

Items, Proceedings of the International Database

Engineering and Applications Symposium, 1998,

pp. 68-77

[10] Lu S.F., Hu H.P. and Li F, Mining weighted

association rules, Intelligent Data Analysis, 5,

2001, pp. 211-225

[11] Chan, R., Yang, Q., and Shen, Y.D. , Mining

high utility itemsets, Proceedings of the 3rd

IEEE International Conference on Data Mining,

2003, pp.19-26

[12] Barber, B., and Hamilton, H. J., Extracting

Share Frequent Itemsets with Infrequent Subsets,

Data Mining and Knowledge Discovery, 7, 2003,

pp. 153-185

[13] Yao H., Hamilton, H.J. and Butz, C.J. (2004). A

Foundational Approach to Mining Itemset

Utilities from Databases. Proceedings 2004

SIAM International Conference on Data Mining,

2004, pp. 482-486

[14] Liu, Y., Liao, W.-K., and Choudhary, A fast high

utility itemsets mining algorithm, Proceedings

of the First International Workshop on

Utiliy-based Data Mining, 2005, pp. 90-99

[15] Savasere A, Omiecinsky E and Navathe S

(1995). An efficient algorithm for mining

association rules in large databases. 21st Int'l

Conf. on Very Large Databases, 1995, pp.

432-444.

[16] http://www.almaden.ibm.com/cs/projects/iis/hdb

/Projects/data_mining/datasets/syndata.html

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 330

