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Abstract: - To design a good control system, it is essential to have accurate dynamic models of the system being 

controlled. Frequency response techniques can be used to develop such dynamic models. In this paper, a new 

approach for direct solution of the frequency response of 2D heat transfer problems with nonlinear source terms 

and dynamic boundary conditions is proposed. Three typical boundary conditions are used in the frequency 

domain. A nonlinear source term due to radiation is employed to determine whether the new approach can be 

applied to nonlinear systems. Using the frequency response of the system, the transfer function of the linearized 

system can be obtained subsequently. The performance of the proposed approach has been validated against the 

results obtained from full-scale computational fluid dynamics (CFD) simulation and excellent agreement has 

been obtained. 

 

Key Words: - Dynamic model, Frequency response, Transfer function, Numerical simulation, Heat transfer 

 

1   Introduction 
The idea of frequency response was proposed by 

Fourier over 200 years ago. It was then further 

developed by Nyquist [1] in 1930’s. The frequency 

response technique is widely used in the control 

engineering to describe the dynamic properties of 

systems and in aid of control system designs. Even 

though frequency response techniques have been 

extended to nonlinear systems through so-called 

Describing Functions, it is mainly applicable for 

linear systems. Therefore, in many industry 

applications, nonlinear dynamic systems are often 

linearized first so that their dynamic behaviours can 

be described in terms of frequency responses and the 

available linear control system design techniques can 

be applied for controller synthesis. The linearization 

is normally under the condition that the amplitude of 

the input signal around a certain steady-state 

condition is small enough so that the nonlinear 

aspects of the system can be reasonably 

approximated [2]. In a stable linearized system, if a 

low amplitude sinusoidal signal is applied to its 

input, all related system variables will also be in the 

form of sinusoidal signals of the same frequency at 

the steady state. Choosing a variable as the reference, 

the rest of the system variables can be represented in 

terms of changes in gains and phase shifts with 

respect to the reference. If a sequence of sinusoidal 

signals at different frequencies is applied, the relative 

gains and phase shifts at the applied frequencies will 

constitute the frequency response [3].  

The frequency response can be determined by 

experiments if the physical system is available. 

Alternatively, one can also solve the underlying 

governing partial differential equations using 

computational fluid dynamics (CFD) method with 

sinusoidal inputs at different frequencies to obtain 

the frequency response [4, 5, 6, 7]. In the CFD 

approach, the frequency response of a system could 

be acquired by solving the unsteady governing 

equations for input signals at different frequencies 

when all the transients die out.  

The frequency response of an industrial furnace 

was developed by Jiang et al. [6, 7] using the CFD 

approach. When the furnace inputs consist of low 

amplitude sinusoidal signals around the steady-state 

condition, the furnace outputs demonstrate dominant 

sinusoidal signals of the same frequency. Based on 

this approach, a PID controller has been designed to 

control this furnace.  Although this is a successful 

application of CFD approach to determine the 

dynamic behaviour of a complex system, such an 

approach has several limitations: (1) the accumulated 

errors due to the discrete time steps in CFD will 

affect the accuracy of the phase shift, and (2) to 

determine the gain and phase shift at each frequency, 

it requires at least twenty time steps in the CFD 

simulation. This is extremely time-consuming in 
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particular at low frequencies. Realizing the 

drawbacks of this CFD approach, a new method was 

proposed by Zhang et al. [8] to obtain the frequency 

response directly from the partial differential 

equation in the frequency domain, which is derived 

from the governing partial differential equation in 

time domain. Therefore, the error comes only from 

the grid size used to discretize the partial differential 

equation in the frequency domain.  The 

computational complexity is in the same order as that 

for solving a steady-state problem. However, 

previous work [8] is only applicable to a system with 

a dynamic temperature boundary condition. This 

current work extends previous work [8] to more 

general cases.  In this study, three types of heat 

transfer boundary conditions are considered. A 2D 

heat transfer problem is employed to demonstrate its 

capability to solve the heat transfer problem with 

different types of boundary conditions.  

 

2  Heat Transfer Equation and 

Boundary Conditions in the 

Frequency Domain  
In this study, a 2D conduction heat transfer problem 

is used to demonstrate the proposed approach. The 

geometry of the 2D heat transfer problem as shown 

in Fig. 1 has unit depth on the z-direction.  The 

radiation as a source term is applied on the two 

surfaces in the z-direction, as shown in Fig. 1. 
 

 
Fig. 1 Geometry of the 2D heat transfer problem 

 

The governing equation for 2D transient 

conduction heat transfer in the time domain is [9]: 
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where θ  is the temperature and Sp is the source term 

due to radiation heat transfer and can be expressed as:  
 

( )44 θθεσ −= ∞AS p  (2)

 

where ∞θ is the ambient temperature.  

Three types of heat transfer boundary conditions 

are considered. They are Dirichlet boundary 

condition (fixed temperature), Neumann boundary 

condition (fixed heat flux), and Robin boundary 

condition (convective).  The boundary conditions for 

this 2D conduction heat transfer problem under 

steady-state condition, which are called the steady 

boundary conditions, are specified as fixed 

temperature on BC1, fixed heat flux on BC2, 

convective heat transfer on BC3, fixed temperature 

on BC4, and insulated condition on the rest of the 

boundaries for the 2D domain as shown in Fig. 1.  

 

2.1  Heat transfer equation in the frequency 

domain  
The 2D conduction heat transfer equation in the 

frequency domain can be derived based on the 

equation in the time domain, i.e., Eq. (1). Under the 

linear assumption, the sinusoidal temperature signal 

can be expressed by: 
 

( ) ( ) ( )[ ]yxtyxtyx m ,sin,,,
~

ϕωθθ +=  (3)

 
where the angular frequency ω  of the input signal, 

the period T and the frequency f have a relation of 

2
2 f

T

π
ω π= = . The solution will consist of two 

terms: transient and steady state solutions:  
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The nonlinear source term, Sp, in Eq. (1) can be 

linearized as 
 

( )tyxRQS p ,,*θ+=  (5)

 

where ( )[ ]yxAQ ,4
0

4 θθεσ −= ∞ ; ( )yxAR ,2 3
0θεσ−= . 

 
In Eq. (5), the higher order terms of sinusoidal 

signals are neglected due to the linear assumption. 

Substituting Eq. (4) into Eq. (1) and subtracting the 

steady-state governing equation from Eq. (1), the 

following equation can be obtained 
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(6)
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Since Eq. (6) is valid for any instant time, let’s select 

2 specific values of t , so that 

2 ,t kω ϕ π+ = 2 ,
2

t k
π

ω ϕ π+ = +  1,2,3...k =  

Substituting these two values into Eq. (6), it follows:  
 

( ) ( )[ ] 02
,

2
,,, =+−++ myxyymxxm kRk θϕϕθθ  (7a)
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=−

+++
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Equations (7a) and (7b) are two independent 

equations with 2 unknowns, amplitude θm and phase 

shift ϕ.   
 

2.2  Boundary conditions in the frequency 

domain 
To solve the heat transfer equation in the frequency 

domain for sinusoidal signal inputs, it is necessary to 

derive the dynamic boundary conditions in the 

frequency domain.   
 
 Dirichlet boundary condition  

When the Dirichlet boundary condition is used as the 

dynamic boundary condition, the amplitude of the 

dynamic temperature is set at the desired value and 

the phase shift is set to 0 at the boundary nodes. This 

will be the reference phase for all other variables. If 

the desired amplitude of the temperature on the 

boundary is represented as θB, the corresponding 

boundary condition can be expressed as: 
 

0;, == BNDBBNDm ϕθθ  (8)
 
where BND is the node on the boundary and P is the 

interior node adjacent to the boundary node. Their 

locations are illustrated in Fig. 2.  
 

 
Fig. 2 Locations of node BND and node P 
 

When the Dirichlet boundary condition is used 

only as a steady boundary condition, there will be no 

dynamic signal on the boundary nodes and the 

boundary condition will become: 
 

PBNDBNDm ϕϕθ == ;0,  (9)
 

By setting BNDϕ  equal to Pϕ , one will be able to 

ensure the continuity of the phase shift at the 

boundary. The heat flux can be calculated using 
 

( ) ( )∑ +
∆

−=+
boundary

PPmqm t
x

kA
tq ϕωθϕω sinsin ,  (10)

 

where mq  and qϕ  are the amplitude and the phase 

shift of the dynamic heat flux respectively. This is a 

vector summation of all the heat flux through the 

boundary nodes. 

 

 Neumann boundary condition  

For the Neumann boundary condition, the heat flux is 

specified on the boundary node BND. When it is 

treated as a dynamic boundary condition, the heat 

flux can be expressed as:  
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The amplitude of the dynamic heat flux is assumed to 

be Bqɺ , and the phase shift of the heat flux is set to 0 

and used as the reference to all other variables. 

Because the heat flux is a derivative of the 

temperature on the boundary nodes, the temperatures 

on the boundary nodes need to be updated in each 

iteration. To obtain the amplitude of the dynamic 

temperature on the boundary node 
,BND mθ , one can 

set 2/πω =t . Subsequently, Eq. (11) becomes:  
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For small 
BNDϕ , 0)2/cos( ≈+ ENDϕπ , which leads 

to 
, ,B m BND x

q kθ≈ɺ . Therefore, 
,BND mθ  can be 

approximated by: 
 

kxqBpmBNDm ∆+= ɺ
,, θθ  (13)

 
To determine the phase shift on the boundary node, 

one can set 
BNDtω ϕ= − ,   

 

( ) xBNDBNDmBNDB kq ,,sin ϕθϕ =−ɺ  (14)
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where BNDϕ  is given by: 

 

( ) BNDBNDBpBND kxq θϕϕϕ −∆+= sinɺ  (15)

 
If the heat flux is used as the steady boundary 

condition, the dynamic heat flux is set to 0, the 

boundary condition becomes an insulated condition 

in the frequency domain, and the boundary condition 

is given by: 
 

PBNDPmBNDm ϕϕθθ == ;,,  (16)

 

Robin boundary condition  

When the Robin heat transfer boundary condition is 

used as a dynamic boundary condition, the 

convective heat transfer coefficient h  and ambient 

temperature θ∞  will contain dynamic signals. They 

can be expressed as  
 

( ) ( )thhth m ωsin0 +=  (17)
 

( ) ( )tt m ωθθθ sin,0 ∞∞ +=  (18)
 

where ( )h t  is the instantaneous heat transfer 

coefficient and it is the sum of 0h , the heat transfer 

coefficient under steady condition, and ( )h tɶ , the 

dynamic heat transfer coefficient. Similarly, ( )tθ∞ , 

0θ  and ( )tθɶ  are the instantaneous, steady state and 

dynamic ambient temperatures, respectively.  

When the heat transfer coefficient contains a 

dynamic signal and the ambient temperature is at its 

steady value, the dynamic energy conservation for 

the node P can be shown as:  
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where the subscript i denotes the interior nodes 

adjacent to the node P. The term on the left hand side 

of Eq. (19) is the change in the internal energy in the 

volume surrounding the node P from time t1 to time t2 

This internal energy change is due to the conductive 

heat flux from the adjacent interior nodes, which is 

the first term on the right hand of Eq. (19), and the 

convective heat flux from the boundary, which is the 

second term on the right hand of Eq. (19). The system 

has been simplified to a linear system after the higher 

order term in the convective heat flux is neglected. 

To determine the amplitude of the dynamic 

temperature, one can integrate Eq. (19) and select 

two specific time, 1t  and 2t , to ensure  
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h h Pϕ ϕ ϕ∆ = − , we have:  

 

( )

( )

( )
( ) 














































∆−








 ∆+
−+

















∆−








 ∆+

+

















+









∆−







 ∆+

∆
−=

∞

=
∑

h

h

BNDm

BND

BND

BNDm

BND

Pm

iiim
n

i i

i

PmPp

h

h

A

x

Ak

Vc

ϕ

ϕ
π

θθ

ϕ

ϕ
π

θ

ω

θ

ϕϕ
π

θ

ω

θρ

cos

2
cos

cos

2
cos

   

cos
2

cos

   

,0

,0

,

,

1

,

 

(20)

 
Equation (20) is the energy balance for the node P in 

one fourth of a period. Then, the amplitude of the 

dynamic temperature on the boundary node can be 

expressed as: 
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Then taking the time derivative for Eq. (19), and 

setting a specific value for t to ensure 

2 ,    0,1,2...Pt k kω ϕ π+ = =   

The phase shift on the boundary node BND can 

be derived as:  
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BNDPBND ϕϕϕ ∆+=  (23)
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Equations (21) - (23) are expressions for the 

boundary condition when the convective heat 

transfer coefficient contains a dynamic signal. 

Similarly, the expression of the boundary condition 

when the ambient temperature contains a dynamic 

signal can be expressed as: 
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BNDPBND ϕϕϕ ∆+=  (26)
 
When a convective heat transfer is used as a steady 

boundary condition, the boundary condition in the 

frequency domain becomes: 
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PBND ϕϕ =  (28)

 

3  Comparison of the Frequency 

Response by the Direct Solution and 

Full-Scale CFD Approach 
The material of the 2D conduction heat transfer 

problem shown in Fig. 1 is aluminum with constant 

properties of 202.4 /k W mK= , 32719 kg mρ =  

and 871 /
p
c kJ kgK= . First, the temperature 

distribution is obtained under the steady-state 

condition. Then, the dynamic signals at different 

frequencies are applied to different boundaries to 

obtain the frequency responses. The steady-state 

boundary conditions are set as: BC1 has a fixed 

temperature of 
1 1100

BC
Kθ = , BC2 has a fixed heat 

flux of 5 2

2 2*10BCQ W m= − , BC3 is subject to a 

convective heat transfer condition with the ambient 

temperature of 
, 3 250BC Kθ∞ =  and heat transfer 

coefficient of 2

3 200BCh W m K= , BC4 has a fixed 

temperature of 
4 500BC Kθ = , and the ambient 

temperature is 200Kθ∞ = . In the frequency response 

calculations, the dynamic signals with amplitude of 

10% of its steady-state value are applied to the 

different boundaries to ensure the linear assumption.  

There are four dynamic signals:  
 
(1) The dynamic temperature on the boundary BC1  

( ) ( ) [ ]10.1* *sin 110*sin  BC t t Kθ θ ω ω= =ɶ  

(2) The dynamic heat flux on BC2  

( ) ( ) [ ]24
22   sin102 sin1.0

~
mWttQQ BCBC ωω ⋅−== ,  

(3) The dynamic heat transfer coefficient on BC3 

( ) ( ) [ ]KmWtthh BCBC
2

33   sin20 sin1.0
~

ωω ==   

(4) The dynamic ambient temperature on BC3  

( ) ( ) [ ]KmWttBCBC
2

3,3,   sin25 sin1.0
~

ωωθθ == ∞∞ .  
 
In this study, the dynamic signals are applied only to 

one boundary at a time and the steady-state boundary 

conditions are applied to the rest of the boundaries. 

The frequency of the dynamic signals starts from 

1 1 4 sece radω = − , and increases by 

0.25

1 *10  secn n radω ω −= ( )2,3...n = . Dynamic 

heat flux on BC4 is recorded.  

For comparison purpose, the transient heat 

transfer process due to dynamic boundary conditions 

is also solved by the full-scale CFD approach using a 

commercial package, FLUENT. The variation of the 

dynamic heat flux on BC4 when the dynamic 

temperature ( )110*sin 0.00316*  t Kθ =ɶ  is applied 

on BC1 is shown in Fig. 3.  It can be seen that the 

dynamic gain (
4BCQɶ ) and phase shift (

4BC
ϕ ) are 

clearly shown. While, it is also found that the 

amplitude of the signals becomes very low at high 

frequency.  Therefore, there is an upper limit when 

using CFD approaches to obtain frequency response. 

In this case, the upper limit is about 

0.0178 / secradω = . On the other hand, the 

proposed approach is analytical in nature and it does 

not suffer from this limitation.  Figures 4 and 5 

illustrate the results using the proposed approach.  

The figures show the distributions of the gain and 

phase shift for the local dynamic temperature when a 

dynamic temperature is applied to BC1 with medium 
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and high frequencies of ( )110*sin 0.00316*  t Kθ =ɶ  

and ( )110*sin 0.562*  t Kθ =ɶ , respectively. It can 

be seen that at the medium frequency (Fig. 4), the 

spatial distributions of the gain and phase shift are 

smoother as compared with the case at the high 

frequency (Fig. 5).  
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Fig. 3 Dynamic heat flux on BC4 with the 

dynamic temperature 

 

 

Fig. 4 Gain and the phase shift of the dynamic 

temperature distribution with dynamic 

temperature ( )110*sin 0.00316*  t Kθ =ɶ on BC1 

 

Fig. 5 Gain and the phase shift of the dynamic 

temperature distribution with dynamic 

temperature ( )110*sin 0.562*  t Kθ =ɶ  on BC1 
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Fig. 6 Comparison of the gain with dynamic 

temperature ( )110*sin  t Kθ ω=ɶ  on BC1 
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Fig. 7 Comparison of the phase shift with dynamic 

temperature ( )110*sin  t Kθ ω=ɶ on BC1 
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Fig. 8 Comparison of the gain with dynamic heat 

flux ( ) 24

2   102 mWtsin*Q
~
BC ω−= on BC2 

The comparison of the frequency responses obtained 

by the proposed approach and CFD approach is given 

in Figs. 6 and 7. It can be seen that the agreement 

between the two is excellent. However, the proposed 

method has an advantage at higher frequency, as it 

does not suffer from numerical errors. Figures 8 and 9 

show the gain and phase shift on the boundary BC4 

when the dynamic heat flux is applied on BC2. 

Figures 10 to 13 show the comparison of the  

42* BCQɶ  

4BC
ϕ  
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Fig. 9 Comparison of phase shift with dynamic 

heat flux ( ) 24

2   102 mWtsin*Q
~
BC ω−= on BC2 
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Fig. 10 Comparison of gain with the dynamic 

heat transfer coefficient 

( ) KmWtsinh
~
BC ⋅= 2

3   20 ω  on BC3 
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Fig. 11 Comparison of the phase shift with the 

dynamic heat transfer coefficient 

( ) KmWtsinh
~
BC ⋅= 2

3   20 ω  on BC3 
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Fig. 12 Comparison of the gain with the 

dynamic ambient temperature 

( ) Ktsin
~

BC,   253 ωθ =∞  on BC3 
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Fig. 13 Comparison of the phase shift with the 

dynamic ambient temperature 

( ) Ktsin
~

BC,   253 ωθ =∞ on BC3 

 

frequency responses when the dynamic heat transfer 

coefficient and ambient temperature (convective heat 

transfer boundary condition) is applied on BC3.  It 

can be concluded that the agreement between the 

frequency responses using both approaches is 

excellent under all three types of dynamic boundary 

conditions. 

 

4 Conclusions 
In this paper, a new approach is proposed to solve the 

2D heat transfer problem in the frequency domain 

with a nonlinear source term. The expressions of 

three types of heat transfer boundary conditions in 

the frequency domain are derived. The performance 

of the proposed approach has been validated against 

the results obtained from full-scale CFD simulation 

and excellent agreement has been obtained. The 
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comparison between the results from the proposed 

approach and the CFD approach indicates that the 

proposed approach can produce almost the same 

results as CFD approach in low to medium frequency 

range, but in high frequency range, the proposed 

scheme outperforms the CFD approach.  

Furthermore, once the heat transfer problem is 

captured in terms of transfer functions, it practically 

takes no time to obtain the system response. This 

approach is suitable for heat transfer problems with 

nonlinear source terms under all three types of heat 

transfer boundary conditions.  
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