Some Properties of Fractional Bessel Processes Driven by Fractional Brownian Motion

YU SUN CHANGCHUN GAO Glorious Sun School of Business & Management Donghua University, Shanghai, 200051 1882 West Yan'An Rd., Shanghai 200051 P. R. CHINA

Abstract: Fractional Bessel processes are defined and considering the processes associated with fractional Bessel processes

$$X_{H}(t) = \int_{0}^{t} sign(B_{H}(s))dB_{H}(t), \frac{1}{2} < H < 1$$
$$Y_{H}(t) = \sum_{j=1}^{d} \int_{0}^{t} \frac{B_{H}^{j}}{R_{H}(s)}dB_{H}^{j}(s)$$

where $B_H = (B_H(1), B_H(2), ..., B_H(d))$ is a d-dimensional $(d \ge 2)$ fractional Brownian motion with Hurst parameter $0 \le H \le 1$ and $R_H = \sqrt{B_H(1)^2 + B_H(2)^2 + ... + B_H(d)^2}$ is fractional Bessel Process driven by fractional Brownian Motion, some of their properties are given.

Key-Words: fractional Brownian motion, fractional Bessel processes, local time, Tanaka formula

1 Introduction

First we will give the definition of Bessel processes and Fractional Brownian Motion.

For every $\delta \ge 0$ and $x \ge 0$, the solution to the equation

$$X_t = x + \delta t + 2 \int_0^t \sqrt{|X_s|} dW_s$$

is unique and strong. In the case $\delta = 0$, x = 0, the solution X_t is identically zero and applying the comparison theorem (see Revuz–Yor [11] Theorem IX.(3.7)) we conclude $X_t \ge 0$ for all $\delta \ge 0$.

Definition 1 (*BESQ*^{δ}) For every $\delta \ge 0$ and $x \ge 0$ the unique strong solution to the equation $X_t = x + \delta t + 2 \int_0^t \sqrt{|X_s|} dW_s$

is called the square of a δ -dimensional Bessel process started at *x* and is denoted by $BESQ^{\delta}$.

Remark: the law of $BESQ^{\delta}(x)$ on $C(R_+, R)$ by Q_x^{δ} . We call the number δ the *dimension* of BESQ. This notation arises from the fact that a $BESQ^{\delta}$ process X_t can be represented by the square of the Euclidean norm of δ -dimensional Brownian motion $B_t: X_t = ||B_t|^2|$. The number $v \equiv \delta/2 - 1$ is called the *index of the process BESQ*^{δ}.

Definition 2 (BES^{δ}) The square root of $BESQ^{\delta}(a^2)$, $\delta \ge 0$, $a \ge 0$ is called the Bessel process of dimension δ started at a and is denoted by $BES^{\delta}(a)$.

Remark: the law of $BES^{\delta}(a)$ by P_a^{δ}

In the case $\delta \ge 2$, $BES^{\delta}(a)$, a > 0, will never reach 0. For $\delta > 1$ a $BES^{\delta}(a)$ process Z_t satisfies $E[\int_0^t (ds/Z_s)] < \infty$ and is the solution to the equation

$$Z_t = a + \frac{\delta - 1}{2} \int_0^t \frac{ds}{Z_s} + W_t$$

For $\delta \le 1$ the situation is less simple. For $\delta = 1$ we have with $It\hat{o}$ Tanaka's formula $Z_t = |W_t| = \widetilde{W}_t + L_t$

where $\widetilde{W}_t \equiv \int_0^t sign(W_s) dW_s$ is a standard Brownian motion, and *Lt* is the local time of Brownian motion.

Refer to Revuz–Yor [11] and Pitman–Yor [9, 10] for the more study of Bessel processes.

Definition 3 (*fBm*) Let $H \in (0,1)$ be a constant. *The (1-parameter) fractional Brownian motion* (*fBm*) with Hurst parameter H is the Gaussian process $B_H(t) = B_H(t, \omega), t \in R, \omega \in \Omega$, satisfying $B_H(0) = E[B_H(t)] = 0$, for all $t \in R$. and

$$E[B_{H}(s)B_{H}(t)] = \frac{1}{2} \{ |s|^{2H} + |t|^{2H} - |s-t|^{2H} \}; s, t \in \mathbb{R}$$

Where *E* denotes the expectation with respect to the probability law *P* for $\{B_H(t, \omega); t \in R, \omega \in \Omega\}$, where (Ω, F) is a measurable space.

If H = 1/2 then $B_H(t)$ coincides with the classical Brownian motion, denoted by B(t).

If H > 1/2 then $B_H(t)$ is persistent, in the sense that $\rho_n = E[B_H(1) \cdot B_H(n+1) - B_H(n)] > 0$ for all n = 1, 2, ...

and
$$\sum_{n=1}^{\infty} \rho_n = \infty$$

If H < 1/2 then $B_H(t)$ is anti-persistent, in the sense that

$$\rho_n < 0$$
 for all $n = 1, 2, ...$
in this case $\sum_{n=1}^{\infty} \rho_n < \infty$ (Shiryaev [5], p. 233)

Another important property of *fBm* is *self-similarity*: For any $H \in (0,1)$ and $\alpha > 0$ the law of $\{B_H(\alpha t)\}_{t \in \mathbb{R}}$ is the same as the law of $\{\alpha^H B_H(t)\}_{t \in \mathbb{R}}$

Definition 4 Denote the *fractional Bessel process* by $R_{H} = \sqrt{B_{H}(1)^{2} + B_{H}(2)^{2} + ... + B_{H}(d)^{2}}$

where $B_H = (B_H(1), B_H(2), ..., B_H(d))$ be a *d*-dimensional fractional Brownian motion with Hurst parameter $H \in (0, 1)$.

We hope to obtain a stochastic calculus for fBm and to use its properties into application.

However, if $H \neq 1/2$ then $B_H(t)$ is not a semimartingale, so we cannot use the general theory of stochastic calculus for semimartingales on $B_H(t)$. For example, as $H \neq 1/2$ the fractional Brownian motion $B_H(t)$ has not *Lêvy* type characteristic, i.e., the process (see Hu [7])

$$X_{H} = \int_{0}^{t} sign(B_{H}(s)) dB_{H}(s), \frac{1}{2} < H < 1$$

(1.1) is not a *fBm*. Furthermore, the process

$$Y_{H}(t) = \sum_{j=1}^{d} \int_{0}^{t} \frac{B_{H}^{j}}{R_{H}(s)} dB_{H}^{j}(s)$$
(1.2)

is the fractional Bessel process. Thus, it is interesting to investigate the properties of these processes. Hu and Nualart obtained some properties of these processes in [7].

The purpose of this paper is to prove the local times of these processes based on $B_H(t)$ exist,

1/2 < H < 1. Moreover, we give a Tanaka formula of the process X_H given by (1.1) and (1.2).

2 Fractional *Itô* type stochastic integral

For $1/2 \le H \le 1$, an alternative integration theory based on the Wick product \diamondsuit was introduced by [3], as follows:

$$\int_{0}^{t} u(s) dB_{H}(s) \coloneqq \lim_{|\pi_{n}| \to 0} \sum_{k} u(t_{k}) \Diamond (B_{H}(t_{k+1}) - B_{H}(t_{k}))$$

Where $\pi_n : 0 \le t_0 \le t_1 \le ... \le t_n = t$ is an arbitrary partition of $[0, t], \pi_n := \max_k \{t_{k+1} - t_k\}$ and $\lim_{|\pi_n|\to 0}$ means the limit in $L^2(\mu)$. The definition of the integrals has been extended by [8] (see also [1]) to all 0 < H < 1 as follows:

$$\int_0^t u(s) dB_H(s) \coloneqq \int_0^t u(s) \delta W_{(H)}(s) ds$$
where $W_{(H)}(t) = \frac{dB_H(t)}{dB_H(t)} \in (S)^*$ with (S)

where $W_{(H)}(t) = \frac{dB_H(t)}{dt} \in (S)^*$ with $(S)^*$ the Hida space of stochastic distributions if

 $u : R_+ \to (S)^*$ satisfies that $u(t) \diamondsuit W^H(t)$ is *dt*-integrable in $(S)^*$. These fractional *Itô* integrals

have many properties of the classical $It\hat{o}$ integral. Recall that the Malliavin Φ -derivative of the function $U: \Omega \rightarrow R$ defined in [3] as follows:

$$D_s^{\phi}U = \int_0^\infty \phi(r,s) D_r U dr$$

where $D_r U$ is the fractional Malliavin derivative at r. Define the space $L_{\phi}^{1,2}$ to be the

set of measurable processes u such that $D_s^{\phi}u(s)$ exists for a.a. $s \ge 0$ and

$$E[(\int_0^\infty D_s^{\phi} u(s)ds)^2 + \int_0^\infty \int_0^\infty u(s_1)u(s_2)\phi(s_1,s_2)ds_1ds_2] < \infty$$

Then the integral $\int_0^\infty u(s) dB_H(s)$ can be well defined as an element of $L^2(\mu)$

Theorem 2.1 ([3]). Let $\{u(t), t \ge 0\}$ be a stochastic process in $L^{1,2}_{\phi}$. Then for the process

$$\eta(t) = \int_0^\infty u(s) dB_H(s), t \ge 0$$

we have
$$D_s^{\phi} \eta(t) = \int_0^t u(r) dB_H(r) + \int_0^t u_r \phi(s, r) dr$$

In particular, if *u* is deterministic, then
$$D_s^{\phi} \eta(t) = \int_0^t u(r) \phi(s, r) dr$$

3 Local Time and Tanaka Formula

Refer to [9], the weighted local time $L(B_H)$ of fractional Brownian motion are established:

$$L(B_H) = 2H \int_0^t \delta(B_H(s) - x) s^{2H-1} ds$$

The Tanaka formula is given as:

$$(B_H(t) - x)^+ = x^+ + \int_0^t \mathbb{1}_{\{B_H(s) > x\}} dB_H(s) + \frac{1}{2} L_t^x(B_H)$$

$$|B_{H}(t) - x| = |x| + \int_{0}^{t} sign(B_{H}(s)) dB_{H}(s) + L_{t}^{x}(B_{H})$$

In this section we show that the local times of the process

$$X_{H} = \int_{0}^{t} sign(B_{H}(s))dB_{H}(s), t \ge 0$$
$$Y_{t}^{H} = \sum_{j=1}^{d} \int_{0}^{t} \frac{B_{s}^{H}}{R_{s}^{H}}dB_{s}^{H}(j)$$

exist and obtain their Tanaka formula.

Lemma 3.1 (Hu [7])

$$E[sign(B_{H}(s))sign(B_{H}(u))]$$

$$= \sum_{k=0}^{\infty} \frac{4(2k)!(s^{2H} + u^{2H} - |s - u|^{2k+1})}{(2k+1)^{2} 2\pi (k!2^{k})^{2} (su)^{(2k+1)}}, t \ge 0.$$

We can get the proof of this Lemma in [7]. By using this Lemma its easy to show the following result holds

Lemma 3.2 Let 1/2 < H < 1, then $sign(B_H(t))D_HX_H(t) \ge 0, a.s$ for all $t \ge 0$. **Theorem 3.1.** Let $\Phi: R^+ \to R$ be a convex function having polynomial growth and let the process X_H be defined by

 $X_{H}(t) = \int_{0}^{t} sign(B_{H}(s)) dB_{H}(s), t \ge 0 \text{ Then there}$ exists a continuous increasing process A^{Φ} such that $\Phi(X_{H}(t)) = \Phi(0) +$

$$\int_{0}^{t} D^{-} \Phi(X_{H}(s)) sign(B_{H}(s)) dB_{H}(s) + \frac{1}{2} A_{t}^{\Phi}, t \ge 0$$

where $D^-\Phi$ denotes the left-hand derivative of Φ **Proof:** If $\Phi \in C^2$, then this is the *Itô* formula and

$$A_t^{\Phi} = \int_0^t \Phi''(X_s) sign(B_H(s)) D_H X_H(s) ds$$

and Lemma 3.1 implies that the process A^{Φ} is increasing.

Let now
$$\Phi \notin C^2$$
. For $\varepsilon > 0$ and $x \in R$ we set

$$p_{\varepsilon}(\varepsilon) = \frac{1}{\sqrt{2\pi\varepsilon}} e^{-\frac{1}{2\varepsilon}x^2}$$

and

$$\Phi_{\varepsilon}(x) = \int_{\mathbb{R}} p_{\varepsilon}(x - y) \Phi(y) dy, (\varepsilon > 0)$$

Then $\Phi_{\varepsilon}(x)$ has polynomial growth and $\Phi_{\varepsilon} \in C^2$. It follows that for all $\varepsilon > 0$ there exists a continuous increasing process A^{Φ} such that $\Phi_{\varepsilon}(X_H(t)) = \Phi_{\varepsilon}(0) + 0$

$$\int_0^t \Phi'_{\varepsilon}(X(s)) sign(B_H(s)) dB_H(s) + \frac{1}{2} A_t^{\Phi_{\varepsilon}}$$

and

$$A_t^{\Phi_{\varepsilon}} = \int_0^t \Phi_{\varepsilon}''(X_H(s)) sign(B_H(s)) D_H X_H(s) ds$$

$$= \int_{R} \Phi_{\varepsilon}''(x) (\int_{0}^{t} \delta(X_{H}(s) - x) (sign(B_{H}(s)) D_{H}X_{H}(s) ds) dx$$

Noting that for all $x \in R$ $\lim_{\varepsilon \downarrow 0} \Phi_{\varepsilon}(x) = \Phi(x) \lim_{\varepsilon \downarrow 0} \Phi'_{\varepsilon}(x) = D^{-}\Phi(x)$ So as $\varepsilon \to 0$. $\int_{0}^{t} \Phi'_{\varepsilon}(X_{H}(s))sign(B_{H}(s))dB_{H}(s)$ $\to \int_{0}^{t} D^{-}\Phi(X_{H}(s))sign(B_{H}(s))dB_{H}(s)$ in probability. As a result, $A_{t}^{\Phi_{\varepsilon}}$ converges also to a

process A^{Φ} which, as a limit of increasing processes, is itself an increasing process and

$$\Phi(X_{H}(t)) = \Phi(0) + \int_{0}^{t} D^{-} \Phi(X_{H}(s)) sign(B_{H}(s)) dB_{H}(s) + \frac{1}{2} A_{t}^{\Phi}$$

The process A^{Φ} can now obviously be chosen to be a.s. continuous. This completes the proof.

Corollary 3.1. For any real number *x*, there exists an increasing continuous process

 $L^{x}(X_{H})$ called the local time of the process X_{H} given by (1.1) in x such that,

$$|X_{H}(t)-x|$$

$$= |x| + \int_0^t sign(X_H(s) - x) dX_H(s) + L_t^x(X^H)$$

Combining this corollary with [3, 9], we get the following

Corollary 3.2. Let L(X) denote the local time of the process X and let

$$L_{t}^{x}(B_{H}) = 2H \int_{0}^{t} \delta(B_{H}(s) - x) s^{2H-1} ds$$

be the weighted local time of fractional Brownian motion B_H . Then we have

$$L_{t}^{x}(X_{H}) - L_{t}^{x}(B_{H})$$

= $|X_{H}(t) - x| - |B_{H}(t) - x|$
+ $2\int_{0}^{t} 1_{\{X_{s} \le x\}} sign(B_{H}(s) - x) dB_{H}(s)$

Corollary 3.3. For any real number x and $t \ge 0$, we have

$$L_t^x(X_H) = \int_0^t \delta(X_H(s) - x) sign(B_H(s)) D_H(s) X_H(s) ds$$

Moreover, for any convex function having polynomial growth $\Phi: R^+ \to R$ the following Ito-Tanaka type formula holds: $\Phi(X_{\mu}(t))$

$$= \Phi(0) + \int_0^t D^- \Phi(X_H(s)) sign(B_H(s)) dB_H(s)$$
$$+ \frac{1}{2} \int_R L_t^x(X_H) \mu_{\Phi}(dx)$$

where $D^{-}\Phi$ denotes the left derivative of Φ and the signed measure μ_{Φ} is defined by

 $\mu_{\Phi}([a,b]) = D^{-}\Phi(b) - D^{-}\Phi(a), a < b, a, b \in R$ Finally, by the same method on can show that the local time of the process

$$Y_{H}(t) = \sum_{j=1}^{d} \int_{0}^{t} \frac{B_{H}^{j}}{R_{H}(s)} dB_{H}^{j}(s)$$

holds, where $B_H = (B_H(1), B_H(2), ..., B_H(d))$ is a $d (\geq 2)$ dimensional fractional Brownian motion with Hurst index 1/2 < H < 1 and

 $R_H = \sqrt{B_H(1)^2 + B_H(2)^2 + \dots + B_H(d)^2} \quad \text{is the}$ fractional Bessel process.

4 Conclusion

It can be seen from the above-mentioned analysis that the processes associated with fractional Bessel processes

$$X_{H}(t) = \int_{0}^{t} sign(B_{H}(s))dB_{H}(t), \frac{1}{2} < H < 1$$

$$Y_{H}(t) = \sum_{j=1}^{d} \int_{0}^{t} \frac{B_{H}^{j}}{R_{H}(s)} dB_{H}^{j}(s)$$

where $B_{H} = (B_{H}(1), B_{H}(2), ..., B_{H}(d))$ conve

where $B_H = (B_H(1), B_H(2), ..., B_H(d))$ converge, have the local times $L^x(X_H)$ and Ito-Tanaka type formula

$$\Phi(X_H(t))$$

= $\Phi(0) + \int_0^t D^- \Phi(X_H(s)) sign(B_H(s)) dB_H(s)$
+ $\frac{1}{2} \int_R L_t^x(X_H) \mu_{\Phi}(dx)$
holds.

References:

- [1] Bender, C., An It^o formula for generalized functionals of a fractional Brownian
- motion with arbitrary Hurst parameter. Stochastic process. Appl. 104 (2003), 81-

106.

- [2] Hu, Y., Øksendal, B., Salopek, D.M., Weighted local time for fractional Brownian
- motion and applications to finance. Stochastic Anal. Appl. 23 (2005), 15-30.
- [3] Duncan, T.E.,Hu, Y., Duncan, B.P., Stochastic calculus for fractional Brownian
- motion, I Theory. SIAM J. Control Optim. 38 (2000), 582-612.
- [4] Nualart, D., Stochastic integration with respect to fractional Brownian motion
- and applications. Contemporary Math. 336 (2003), 3-39.
- [5] A. Shiryaev: On arbitrage and replication for fractal models. In A. Shiryaev and A.Sulem (eds.): Workshop on Mathematical Finance, INRIA, Paris 1998.
- [6] A. Shiryaev: Essentials of Stochastic Finance. World Scientific 1999.

- [7] Hu, Y., Nualart, D., Some processes associated with fractional Bessel processes. J. Theoret. Prob. 18 (2005), 377-397.
- [8] Elliott, R.J., Van der Hoek, J., A general fractional white noise theory and applications to finance. Math. Finance. 13(2003), 301-330.
- [9] Pitman, J. and Yor, M. Bessel processes and infinitely divisible laws. In *Stochastic Integrals*, Volume 851 of *Lecture Notes in Mathematics*, 285–370. Springer-Verlag Berlin Heidelberg, 1980.
- [10] Pitman, J. and Yor, M. A decomposition of Bessel bridges. Z. Wahrsch. Verw. Gebiete, 59:425–457, 1982.
- [11] Revuz. D. and Yor, M. Continuous Martingales and Motion. Springer-Verlag Berlin Heidelberg, 1991.