
A Novel Storage Embedded Application

JINGYU ZHANG, RAFAEL CALVO, CRAIG JIN, RICHARD SHEPHARD
School of Electrical and Information Engineering, School of Electrical and Information Engineering, School of

Electrical and Information Engineering, Australian Biosecurity CRC
The University of Sydney NSW, 2006

AUSTRALIA

Abstract: - This paper presents a solution for embedded database application architecture. Many mobile applications contain
enormous data and intricate search which are easy to management if those data are preserved into one hard disk or the Disk
Array. Therefore, organizing data structure according to device’s capacity and system’s priority is the way to improve
system usability, availability. In order to enable handling enormous information, we propose a database application
architecture, which provides reliable and configurable data storage services to embedded application system with the
performance, scalability and reliability.

Key-Words: - Embedded Database Application, Architecture, and Software Design.

1. Introduction
With the rapid growth in mobile technologies and the
inadequate coverage of wireless networks, the
demand of available embedded applications is
becoming ever greater; meanwhile, the computing
landscape is much richer and more diverse than before.
To collect information’s organization in a way that a
computer program can quickly obtains desired pieces
of data are becoming the standard feature for most
mobility applications.

One solution of database functions is that using
wireless channels receive information from database
server, which so-called mobile computing paradigm
extends [1]. Dealing with Massive data, some
researches thought that put all data on the Internet [2].
With network availability, mobile users access
personal data by a Data Server Provider (DSP)[3].
However in some cases, they may have no networks
coverage at all or wireless networks are vulnerable to
frequent disconnection. So a new type of database
management system (DBMS), the In-Memory
Database Systems adapt to mobile systems which load
all data to RAM from files when application start up,
which is installed in set-top boxes, network switches
and consumer electronics[4, 5]. The database APIs
are used to the application requests the data items and
all the operations to database cache are totally written
to the files. From the performance aspect, it is a good
approach to use In-Memory Database because it faster
overall responsiveness than a traditional DBMS[6]. In
addition, In-memory databases are less complex
because it has fewer moving parts or interacting
processes.

In generally, however, today’s smart phones and
PDA own 128MB of flash and 64MB of RAM. But, a
phone OS need occupy many of available storage[7].
As a result, every byte used by the Embedded OS and
foundational application such as middleware is a byte
not available to developer for additional features. For
example, O2 XDA Atom (http://www.seeo2.com/)
Installed RAM for program is 50.39MB. To apart
from the memory that used by OS and essential
applications, totally, 14MB is free for users’
applications. Worst of all, the free memory is not
entirely used by one application because the
Operating System reserves several memories for logs
or backup function which mainly focus on Disaster
Recovery. Meanwhile, Operating System assumes not
only one application run on the device, so some
memory is reservation for other application. Thus, the
rest of memory for one application may less than 7 or
8 MB. It is clearly that the majority of database
applications overstep the limit of devices providing.
Normally, the size of database has been reduced
significantly to match the memory[8, 9]. Whereas,
decreasing database will results in losing functions
which may not match the requirements of customers.

In this paper, we describe the architecture of mobile
database application. Section 2 presents some previous
work in structuring mobile applications. Section 3
presents conclusions.
2. System Anatomy
First, the mobility architecture will be described. Then,
there are some in-depth descriptions of the data search
and storage structures. Finally, the evaluation of
performance will be scale.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 47

mailto:jyzhang@ee.usyd.edu.au
mailto:rafa@ee.usyd.edu.au
mailto:craig@ee.usyd.edu.au
mailto:shephard@gippslandhi.coop
http://www.seeo2.com/

2.1 Architecture Overview
In this section, we will give a high level overview of
how the whole system structure looks like pictured in
Figure 1. The framework consists of three layers: an
Impute/Output tier, a Procedure Logics tier and a Data
Access tier.

Firstly, the Impute/Output tier is the aggregate of
methods by which users interact with a particular
system, device. It handles presentation and interfaces
with the operating system, the network and other
software tools. It provides two functions, input and
output. For the whole system, it is extremely
important for the mobile database application because
there are not any screen’s standards for the mobile
phones or handhold devices. To inputting
information, people may use keypad; touch screen or
voice inputting to let system accept information. To
outputting information, the dimensions of mobile
monitors are great deal different from one
manufactory to another.

The Procedure Logics Tier covers the core
business model which provides the basis for all
business transactions which manages the business
operation of the application. Additionally, The
Procedure Logics Tier determines the behavior of the
application in response to different situations, such as
the need for validation and approval of final products
before reporting. Moreover, this Tier includes the
organization’s workflows and operating procedures.

Hence, it comprises the most expensive component in
the implementation process.

Finally, the Data Access tier provides a Data
Access Interface (DAI), a Data Centre (DC), and
Memory Card Database (MCD). The DAI duty is as
much as shielding by which the database operations
are hidden from other parts. As the purpose of the
architecture is that operating enough data to
stand-alone mobile database, the role of DAI is
smoother operation of the mobile platform for
retrieving data and easer shifts the structure of
database organization. In addition, the DAI quickly
transfer users’ intents to database acceptable
commands. For the architecture, one of key
components is the DC which is a
platform-independent Java database and all the
features have been loaded into the program memory
when system start-up. Meanwhile, it provides
effective data management for rapid and efficient
mobile enterprise applications. Compared to
traditional databases, DC eliminates disk I/O and
provides Extra-SQL. Another key component is the
MCD. MCD is a multi-attribute indexing file system,
which is saved in Storage Memory.

Figure 1 Archetecture

User Interface

KeyPad Touch Screen

Common Logic

Data Access Interface

Data Centre

In the Multiple-layers Application, all
components are contained in greatly independent and
separate tiers. This separation of User Interface,
Procedure Logics, and Database Tiers which allows
each Component to be used, replaced or reused, in
new combinations that meets specific and dynamic
business requirements[10].

MCD

2.1.1 Data Access (DA) Tier structures
In this tier, all of the database and files retrieve and
store functions are encapsulated in this component.
Each Object Oriented object has a shield around it and
objects can not communication with each other. The
way that they exchange information is though Data
Access Tier in which all the database API are
interconnected through the Data Access Tier. This
component keeps the systems flexible. The business
process can change easily. Additionally, the customer
does not care about the format of database in which
may come from DC or MC.

Object Oriented experts can build DA Tier as a
flexible system because every module of the system
can change independently, no impact to the other
modules. Features’ reuse has become a strongpoint in
this architecture due to its potential benefits, which
include increased product quality and decreased
product cost.
2.1.2 Data center
The architecture of the Data Centre is shown in Figure
2. Data Centre is the key components of Data Storage

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 48

Layer by which data cache and in-memory database
are combined together. It handles the cache and
storage of Message, Transaction Data, and User Data.
The Authentication Manager may be considered as
optional function for stand-alone mobile database
system because most of embedded devices support it.
Thus, for improve performance, this part can as an
additional choice.

Query Parser is the parts which analyze syntactic
units which are originate by users in order to obtain
the query results from database. The parser is a
function that carries out the task which converts input
text into a data structure, which is suitable for later
processing and which captures the implied hierarchy
of the input.

The database contains the tables and Recovery
Log. To Recovery Log, it is a sequence of log records,
which include transaction identifier, the data item
written. Database modifications can be record in term
of Recovery Log.

There are many types of database structures can

be use for DC such as Relational Database structure,
Object-Oriented Database structure, and
Object-Relational Database structure. Since the

benefits of Relational Database overweight others, the
DC’s functions are described as a relational database.
First of all, the key benefit of a Relational Database is
that it can deal with complex relationships between
objects. One reason of people use enormous data with
mobile device is that the data contain many objects
and the relationship around those objects are really
involutedly. Secondly, a relational database was
selected because it is used for storing large amount of
data. The data organization for the relay settings data
was arrived at through a process. Therefore, to enter,
organize and select information in table of rows and
columns, Relational Database is the ideal method.
Moreover, in certain area, a relational database is a
rational solution, especially in terms of analysis. The
databases let data is manipulated in complex,
interesting ways, allowing you to retrieve all records
that match users’ specific requirements,
cross-reference different tables, and update records in
bulk.

The principle of creating a database for embedded
systems is determined by the application’s
requirements. The structures and features vary widely
from vendor to vendor because phones are not built to
a standard architecture. For instance, different
manufactories define the concept “embedded systems”
and “embedded database” to mean different things.
Thus, the better way to save voluminous user data is to
create individual data structures base on MCD, and
then integrate that with your application.

To implement the database, we create the HB-Nary
tree structure. The HB-NAry tree is a multi-attribute
search structure with behavior similar with the
single-attribute N-Ary tree [11] with holey brick
function. Using holey brick (HB) deal with smaller
bricks removed in k-dimensional space. To the
objective of saving space, the empty nodes do not be
contented in HB-Nary tree. Hence, the number of

nodes in the tree is d
N

N h

Δ−
−
−
1
1

, if the heights are

and empty nodes are

h

dΔ .

∑
=

−− Δ−
−
−

=Δ−++++=Δ−
h

i

h
hi d

N
NdNNNNdN

1

12101

1
1

Figure 3 represents the storage components of MCD.
Indices, Data dictionary and Data files are included in
MCD. The Indices provide fast access to data items
that keep particular values. The Data files are located
in the tree’s nodes which are saved by encrypt file
format. In addition, the structure of the database is
describes by Data dictionaries which are used

Figure 2 Data Center

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 49

frequently. Therefore the database system split the
Data dictionary into two parts in term of priorities.

Database Indices
The database index keeps information about each
document. The index structure is associated with a
particular search key such as ordered by fileID which
is considered as the keys in sorted order, and
associates with each search key. The information
stored in each entry includes the current status, a file
pointer. Forward Index and Inverted Index are defined
in the indices.

Data dictionary
The dictionary has several different forms. One
important change from other systems is that the
lexicon fit in DC for usability and performance. In the
database management system, the dictionary defines
the basic organization of a database, which contains a
list of all files in the database, the number of records in
each file, and the names and types of each field[12].
Without a data dictionary, a database management
system cannot access data from the database.

3. Conclusion
This paper addresses a novel mobility stand-alone
database structure in an embedded real-time system.
In particular, the architecture is suitable for gigantic
data searching and storage application. According to
our experimental evaluation, this architecture is
accurate and effective enough to give the results
optimized.

The basic idea for the architecture is to
improve the availability and usability for embedded

database applications. To realize this idea, we
proposed a DC and MCD structure to locate data into
different parts of embedded device and organized them
in term of HB-NAry tree. As a result, the architecture
can be regarded as an effective solution to embedded
database application and it has already been running
on the Bovine Syndrome Surveillance System
(BOSSS)[7] which is syndrome surveillance systems
for cattle.

MCD
 Indices

Data

Data files

MCD
 Indices

Data

Data files

MCD
 Indices

Data

Data files

Data center

Data dictionary

Figure3 MCD

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 50

References:

[1]A. S. X. Hong V. Leong, "On adaptive caching in

mobile databases," in ACM symposium on Applied
computing: ACM, 1997.

[2] H. H. G. C. D. Y. L. Xiaoming, "Global file store: a
massive storage system on the internet concept and
design," in IEEE International Conference on
Computer Networks and Mobile Computing, :
IEEE 2001.

[3]C. Zuji Mao; Douligeris, "A distributed database
architecture for global roaming in next-generation
mobile networks," IEEE/ACM Transactions on
Networking, vol. 12, pp. 146-160, Feb. 2004.

[4]M. A. Olson, "Selecting and implementing an
embedded database system," Embedded Systems,
vol. 33, pp. 27 - 34 Sep 2000

[5]N. Wyatt, "Pure Java databases for deployed
applications," in 16th IEEE International
Conference on Data Engineering, 2000.

[6] C. K.-L. L. W. M. Z. W. R. Yu, N., "A
methodology to retrieve text documents from
multiple databases," IEEE Transactions on
Knowledge and Data Engineering, vol. 14, pp.
1347-1361, Nov.-Dec. 2002.

[7] J. Zhang, Calvo, RA, Shephard, RW & Jin, C, "A
Framework for Mobile Disease Report and
Investigation. International Conference on Mobile
Technology Applications and Systems," in 3rd
International Conference on Mobile Technology
Applications and Systems Bangkok, 2006.

[8] C. S. K. Thomas J. Marlowe, James W. Benham,
"Design patterns for database pedagogy: a
proposal," ACM SIGCSE Bulletin, vol. 37, pp.
48-52, February 2005.

[9] F. H. De Marchi, M.-S.; Petit, J.-M., "Some
remarks on self-tuning logical database design," in
Data Engineering Workshops, 2005. 21st
International Conference on: IEEE, 2005.

[10] L. B. H. Peter Honeyman, "Extending the
usability of mobile computers Communications
and Consistency in Mobile File Systems," IEEE
Personal Communications, vol. 2, pp. 44-48,
December 1995 1995.

[11]E. a. B. Salzberg, "Using the Holey Brick Tree for
Spatial Data in General Purpose DBMSs," IEEE
Database Engineering Bulletin, vol. 16, pp. 34--39,
September 1993 1993.

[12]M. A. Swain, J.A.; Korrapati, R.; Swain, N.K.,
"Database programming using Java," in
SoutheastCon, 2002. Proceedings IEEE, 2002.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 51

	1. Introduction
	2. System Anatomy
	Database Indices
	The database index keeps information about each document. The index structure is associated with a particular search key such as ordered by fileID which is considered as the keys in sorted order, and associates with each search key. The information stored in each entry includes the current status, a file pointer. Forward Index and Inverted Index are defined in the indices.
	Data dictionary

	3. Conclusion

