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Abstract: In this work we are concerned about a singular boundary value problem involving the p-laplacian which
arises in mathematical models of fluid mechanics. We analyze the asymptotic behavior of the solutions of the
considered ordinary differential equation near the singularities and introduce a computational method which takes
this behavior into account.
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1 Introduction

The mathematical modelling of various phenomena of
mechanics and physics leads to the following Dirich-
let problem:

−div
(|∇g|p−2∇g

)
= f(|x|, g), x ∈ B;

g(x) > 0, x ∈ B;
g(x) = 0, x ∈ ∂B,

(1)

where B is the unit ball centered at the origin in IRN ,
N > 1, p > 1.

The nonlinear differential operator in the left-
hand side of (1) is known as the p-laplacian and, in
the case of p = 2, reduces to the usual laplacian.

It is worth to remark that the laplacian operator
arises in the modeling of many classical problems of
fluid dynamics, as the result of the application of a
”linear flow law” (see [1]). For example, in the case
of heat conduction problems, if we denote by g the
steady state temperature, according to the Fourier’s
law, the heat flow vector is proportional, in module, to
|∇g|. When this law is applicable, the heat diffusion
is given by div(∇g), which yields the laplacian oper-
ator. However, in the modeling of certain processes,
for example, the melting of ice at a constant tempera-
ture, the heat flow is better described by a generalized
Fourier’s law, which states that the flow vector is a
nonlinear function of the temperature gradient, with
the form |∇g|p−2∇g (see, for example, [2]). Then the
heat diffusion will be represented by the p-laplacian.

Similar situations, when the generalization of
classical linear problems leads to nonlinear ones, in-

volving the p-laplacian, also occur when modeling
flows of non-newtonian fluids [1], and in elasticity
theory, when modelling the deformation of nonlinear
membranes [3].

One is often interested in radial solutions of prob-
lem (1), that is, solutions that depend only on |x|. In
that case, problem (1) reduces to a boundary value
problem for an ordinary differential equation:

−r1−N
(
rN−1|g′|p−2g′

)′ = f(r, g), r ∈ (0, 1);
g(r) > 0, r ∈ (0, 1);

g′(0) = 0, g(1) = 0,
(2)

where N ≥ 1 is the space dimension. We shall as-
sume that f : (0, 1) × (0,∞) → IR is continuous in
the considered domain and has singularities at y = 0
or r = 0.

The existence and the properties of solutions to
problem (2), under different assumptions on the func-
tion f , were investigated by many authors. The ex-
istence and uniqueness of solution in the case p =
2, N = 1, with f(r, g) = rgn,n < 0 was proved
by Nachman and Callegari [4], in connection with a
boundary layer problem in fluid mechanics. In [5],[6]
and [7] the authors also considered the case p = 2,
but with f(r, g) = rσgn, σ > −1. In these works
the asymptotic behavior of the solutions near the sin-
gularity at r = 1 has been analyzed and numerical
methods were introduced, which take into account this
behavior. Moreover, upper and lower solutions were
determined and, in some particular cases, an explicit
formula for the exact solution was obtained.
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Concerning the case p �= 2, in [8] and [9] Wong
has obtained sufficient conditions for existence and
uniqueness of solutions of problem (2) , for N = 1.

In a recent work, Jin, Yin and Wang [10], using
the method of lower and upper solutions, have inves-
tigated the existence of solutions to problem (2) in the
general case N ≥ 1.

In the present paper, we will continue the investi-
gation of problem (2) in the case N = 1, for p > 1
and f(r, g) = arσgn, where a is a negative constant.
The values of σ and n for which the existence of so-
lution is guaranteed depend on p . According to the
Existence Theorem of [8], a sufficient condition for
the existence of solution is σ ≥ 0, n − p + 1 < 0,
p ≥ 2. On the other hand, uniqueness of solution in
this case is guaranteed by Theorem 2.3 of [9]. As we
shall see in the next section, existence of solution can
be guaranteed under weaker conditions.

When n < 0 this problem has a singularity at r =
1, since the second derivative of g is not continuous at
this point. The first derivative has also a discontinuity
at this point, if n < −1. Moreover, the problem can
have also a singularity at r = 0, for some values of σ
and p. This will be discussed in the next sections.

2 Behavior of the solution in the
neighborhood of r = 0

Consider the singular Cauchy problem:

(|g′(r)|p−2 g′(r))′ = arσgn (r) , 0 < r < r0,(3)

limr→0+ g′(0) = 0. (4)

In this section we will analyze the asymptotic be-
havior of the solutions of this Cauchy Problem when
r → 0+. Our main result is resumed in the following
proposition.

Proposition 1 Assume that in (3) p > 2, σ ≥ 0, n <
0 and r0 > 0. The Cauchy problem (3)-(4) has, in
the neighborhood of the singular point r = 0, a one
parameter family of solutions that can be represented
by:

g1(r, b) = C1−brk

[
1 − bn(1 + σ)

2C1(2p + 2σ − 1)
rk + o

(
rk
)]

,

(5)

where k = p+σ
p−1 , C1 =

( −a(p−1)p−1

bp−1(p+σ)p−1(σ+1)

)− 1
n

and

b > 0 is the parameter.

Proof. In the neighborhood of r = 0, let us look for a
solution of (3)−(4) in the form

g(r) = C1 − C2r
k [1 + o(1)]

g′(r) = −kC2r
k−1 [1 + o(1)] ,

g′′(r) = −k(k − 1)C2r
k−2 [1 + o(1)] , r → 0+.

(6)
Substituting in (3) we obtain

lim
r→0+

kp−1 (k − 1) (p − 1)Cp−1
2 rk(p−1)−p−σC−n

1 ×[
1 − C2

C1
rk
]−n

= a,

(7)
which implies k = p+σ

p−1 , k− 1 = σ+1
p−1 , and with C2 =

b > 0 we have C1 =
( −a(p−1)p−1

bp−1(p+σ)p−1(σ+1)

)− 1
n

.

Defining y(r) by g (r) = C1 − C2r
k [1 + y (r)],

we obtain the Cauchy problem in y

(p−1)2

σ+1

[
1 + y + r

ky′
]p−2 ×[

(k − 1)k(1 + y) + 2kry′ + r2y′′
]

=[
1 − b

C1
rk(1 + y)

]n
,

(8)

y(0) = lim
r→0+

ry′ (r) = 0, (9)

where r = 0 is a regular singular point of (8).
For each b �= 0, this problem has a particular so-

lution that can be represented by

ypar (r, b) =
+∞∑

l=0,j=0,l+j≥1

yl,j (b) r
l+j p+σ

p−1 ,

where 0 < r ≤ δ (b) , δ (b) ≥ 0 and the coefficients
yl,j , depending on b, may be determined substituting
ypar in (8), which gives in the case l = 0, j = 1

y0,1 = − bn(1 + σ)
2C1(2p + 2σ − 1)

.

Writing out the leading linear homogeneous terms of
(8) for solutions that satisfy (9) we obtain the equation

r2y′′+
3p + pσ − 2

p − 1
ry′+

(p + σ)(σ + 1)
p − 1

y = 0, r → 0+

whose characteristic exponents are λ1 = −p+σ
p−1 < 0

and λ2 = −(σ + 1) < 0. Therefore, for each b �= 0
this problem has no other solution than ypar (r, b).

From Proposition 1 we can conclude that if g is
a solution of problem (3)-(4), then g′′ will have a dis-
continuity at r = 0 whenever k < 2 , that is, when
σ < p − 2.
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3 The singularity at r = r0

In order to obtain the behavior of the solution in the
neighborhood of the singular point r = r0, let us now
consider the singular Cauchy problem:

(
∣∣g′(r)∣∣p−2

g′(r))′ = arσgn (r) , 0 < r < r0, (10)

g(r0) = lim
r→r−0

[(r0 − r) g′(r)] = 0. (11)

As we shall see, the asymptotic behavior of the
solutions when r → r+

0 may change significantly, de-
pending on the value of n (as it happens in the case
p = 2). Here we will focus on the two main cases:
−1 < n < 0 and n < −1, n �= −2 − 1

p−1 . The cases

of n = −1 and n − 2 − 1
p−1 will not be treated here.

Details about these cases can be found in [11].

Proposition 2 Assume that in (10) p > 1, σ ≥ 0, n <
0 and r0 > 0. The Cauchy problem (10)-(11) has, in
the neighborhood of the singular point r = r0, a one
parameter family of solutions that can be represented
by:

g(r, c) =
{

g2(r, c), if n < −1 n �= −2 − 1
p−1 ;

g3(r, c), if n > −1;
(12)

as r → r−0 , where c is the parameter,

g2(r, c) =
(

arσ
0 (p−1−n)p

pp−1(p−1)(1+n)

) 1
p−1−n (r0 − r)

p
p−1−n[

1 − (1+n)pσ
(p−1−n)(2p+np−n−1)r0

(r0 − r) + c (r0 − r)
−p(1+n)
p−1−n

+O((r0 − r)1+μ)
]
,

(13)

μ = min
{

1,−p(1+n)
p−1−n

}
;

g3 (r, c) =
(

arσ
0

(p−1)(2+n)(1+n)c

) 1
p−2−n (r0 − r) +

c (r0 − r)2+n
[
1 + y0,1 (c) (r0 − r)1+n + o

(
(r0 − r)1+n

)]
,

(14)

Proof. First, consider the case n < −1. It can be
easily proved that in the neighborhood of r = r0, a
solution of problem (10)-(11) may be given by

g (r) = C (r0 − r)k [1 + o(1)], r → r−0 , (15)

where k = p
p−1−n > 0, k (k − 1) = p(1+n)

(p−1−n)2
< 0

and C = ( arσ
0 (p−1−n)p

pp−1(p−1)(1+n)
)

1
p−1−n .

If in (10)-(11) we perform the variable substitu-
tion

g (r) = C (r0 − r)k [1 + y (r)], (16)

we obtain the Cauchy problem in y

(p−1−n)2

p(n+1)

[
1 + y − p−n−1

p (r0 − r)y′
]p−2

[
(r0 − r)2 y′′ − 2p

p−1−n (r0 − r) y′

+ p(1+n)

(p−1−n)2
(1 + y)

]
− ( r

r0
)σ(1 + y)n = 0,

0 < r < r0

(17)

y (r0) = lim
r→r−0

[
(r0 − r) y′ (r)

]
= 0, (18)

where r = r0 is a regular singular point of equation
(17).

Writing out the leading linear homogeneous
terms of (17), for solutions that satisfy (18), we ob-
tain the equation

(r0 − r)2 y′′ − 2p+(p−2)(n+1)
p−1−n (r0 − r) y′+

p(1+n)
p−1−ny = 0, u → r−0

(19)

whose characteristic exponents are λ1 = −1 < 0 and
λ2 = −p(1+n)

p−1−n > 0. When n = −2 − 1
p−1 , we ob-

tain λ2 = 1, and therefore the difference between the
characteristic exponents is an integer. In this case the
expansion of y has a different form and it is out of
scope of the present work. For any other value of
n < −1 the problem (17)-(18) has a particular so-
lution, ypar(r), holomorphic in r = r0 and if r �= r0,

ypar(r) =
+∞∑
l=1

yl (r0 − r)l , |r0 − r| ≤ δ, δ > 0,

where the coefficients yl may be determined substi-
tuting ypar(r) in (17). For example, with l = 1, we
get

y1 = − (1 + n) pσ

2 (p − 1 − n) (2p + np − n − 1) r0
.

The one-parameter family of solutions of
(17)−(18) which reduces to ypar when the parameter
c is zero, can be represented by:

y (r, c) = y1 (r0 − r) + O
(
(r0 − r)2

)
+c (r0 − r)λ2 [1 + o(1)],

(20)

when r → r−0 . Moreover, taking into account that
(17) is an asymptotically autonomous equation, this
family may be represented in the form of a convergent
series:

y (r, c) = ypar (r) + c (r0 − r)λ2 [1 + b1 (r0 − r) +
b2 (r0 − r)2 + · · · ] + c2 (r0 − r)2λ2[

c0 + c1 (r0 − r) + c2 (r0 − r)2 + · · ·
]

+ · · · ,

|r0 − r| ≤ Δ (c) , Δ (c) > 0,
(21)
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and the one-parameter family of solutions of the
Cauchy problem (10)−(11) that we were looking for,
in the case n < −1 and n �= −2 − 1

p−1 , is given by
(13).

Let us now consider the case n > −1. In the
neighborhood of r = r0, we shall look for a solution
of this problem in the form:

g (r) = C1 (r0 − r) + C2 (r0 − r)k [1 + o (1)],

g′ (r) = −C1 − kC2 (r0 − r)k−1 [1 + o (1)],

g′′ (r) = k (k − 1)C2 (r0 − r)k−2 [1 + o (1)], r → r−0 .

From (10)-(11),

(p+1)k (k − 1)C2 (r0 − r)k−2−n Cp−n
1 |r→r−0

= arσ
0 ,

which implies k = 2 + n > 0, k − 1 = n +
1 > 0 and with C2 = c < 0 we get C1 =(

arσ
0

(p+1)(2+n)(1+n)c

) 1
p−n

.

Next, we define the function y (r) by

g (r) = C1 (r0 − r) + c (r0 − r)k [1 + y (r)].

Substituting in (10)-(11), we obtain the Cauchy prob-
lem in y[

1 + c
C1

k(r0 − r)k−1 − c
C1

(r0 − r)ky′
]p ×[

(r0 − r)2 y′′ − 2k (r0 − r) y′ + k (k − 1) (1 + y)
]

= k(k − 1)
(

r
r0

)σ [
1 + c

C1
(r0 − r)k−1(1 + y)

]n
,

0 < r < r0,
(22)

y (r0) = lim
r→r−0

[(r0 − r) y′ (r)] = 0, (23)

where r = r0 is a regular singular point of (22) -(23).
For any c �= 0, this problem has a particular solu-

tion that can be represented by the convergent series

ypar (r, c) =
+∞∑

l=0,j=0,l+j≥1

yl,j (c) (r0 − r)l+j(1+n) ,

where 0 ≤ r0 − r ≤ δ (c), δ (c) ≥ 0 and the co-
efficients yl,j may be determined substituting ypar in
(22).

If we write the leading linear homogeneous terms
of (22) we obtain

(r0 − r)2 y′′ − 2 (2 + n) (r0 − r) y′+
(2 + n) (n + 1) y = 0,

(24)

as r → r−0 . This equation has the characteristic ex-
ponents λ1 = −1 − n < 0 and λ2 = −2 − n < 0.

Then (22)−(23) has no other solution than ypar (r, c).
Summarizing, we conclude that, for any −1 < n < 0,
the Cauchy problem (10)−(11) has a one-parameter
family of solutions that can be represented by (14).

From Proposition 2, some conclusions can be
taken concerning the singularity of the problem
(10),(11) at r = r0. When −1 < n < 0, g′ is con-
tinuous at r = r0, but g′′ isn’t. When n < −1, the
first derivative is also discontinuous at this point. The
same hapens when n = −1 (details about this case
can be found in [11] ).

4 Lower and Upper Solutions

Let us consider again the boundary value problem

(|g′(r)|p−2 g′(r))′ = arσgn (r) , 0 < r < r0,(25)

limr→0+ g′(0) = 0, (26)

limr→r−0
g(r) = 0, (27)

with p > 1, σ > −1 and n < −1.

Definition 3 We shall say that h (r) is a lower (resp.
upper) solution of the problem (25)-(27) if h (r) ∈
C [0, r0] ∩ C2 (0, r0) and satisfies

−(|h′(r)|p−2 h′(r))′ + arσhn (r) ≤ 0 (resp. ≥ 0),
0 < r < r0, h′ (0) ≤ 0 (resp. ≥ 0), h (r0) = 0.

We want upper and lower solutions to verify

lim
r→0+

h′ (r) = 0,

lim
r→r−0

h (r) = 0,

lim
r→r−0

h(r)
g(r) = α1 �= 0,

where the last condition means that the upper and
lower solutions are asymptotically equivalent to the
exact solution in the neighborhood of the singular
point r = r0. Taking into account the asymptotic be-
havior of the solutions at r = 0 and r = r0, studied
in the previous sections, we will look for lower and
upper solutions in the form

h(r) = B
(
rk
0 − rk

) p
p−1−n

, (28)

where k = σ+p
p−1 and B is a positive constant. Note

that in the case p = 2 we obtain the upper and lower
solutions, introduced in [7]. We have k > 1, which
follows from σ > −1 and p > 1. We want to define
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B in such a way that h satisfies equation (25), that is,
h must verify

(|h′(r)|p−2h′(r))′ = ah(r)nrσ (29)

With this purpose, we note that

(|h′(r)|p−2h′(r))′ =

= 1
Bkp(−1 + p)rσ(rk

0 − rk)
pn

p−1−n

(
Bkp

p−1−n

)p
q(r)

(30)
where q(r) = −(p − 1 − n)(k − 1)rk

0 +
(1 + n + (k − 1)p) rk, r ∈ [0, r0].

On the other hand, from (28) we have

h(r)n = Bn
(
rk
0 − rk

) pn
p−1−n

(31)

By substituting (30) and (31) into (29) we obtain

− 1
Bkp

(−1 + p)
(

Bkp

p − 1 − n

)p

q(r) + aBn = 0.

(32)
Note that if

1 + n + (k − 1)p = 0 (33)

then q(r) reduces to a constant:

q(r) ≡ rk
0(k − 1)(1 + n − p). (34)

In this case, that is, if n = (1−k)p− 1, equation (32)
takes the form

− 1
Bkp(−1 + p)

(
Bkp

p−1−n

)p
rk
0(k − 1)(1 + n − p)

+aBn = 0
(35)

Solving (35) with respect to B, we obtain

B =
(−a(p − 1 − n)p−1

rk
0(kp)p−1(k − 1)

) 1
p−1−n

. (36)

Hence we conclude that when the condition (33) is
satisfied the exact solution of the problem (25)-(27)
has the form (28), with B given by (36). For values of
n, p, σ which do not satisfy that condition we cannot
find an explicit formula for the exact solution. How-
ever, by analyzing the function q(r), we can obtain
conditions on B, under which the function h can be an
upper or a lower solution, according to Definition 3.
This is summarized in the next proposition.

Proposition 4 Let σ > −1, n < −1, p > 1 and let
B > 0 be a constant. Then the function defined by
(28) will be

• a lower solution of the problem (25)-(27) if B
satisfies

B ≤ B1 =
(

a(p−1−n)p(p−1)p−1

pp−1(1+n)(σ+p)prk
0

) 1
p−1−n

,

when n ≤ (1 − k)p − 1,
and

B ≤ B2 =

(
− a(p−1−n)p−1(p−1)p−1

pp−1(σ+p)p−1(σ+1)r
σ+p
p−1
0

) 1
p−1−n

,

when −1 > n ≥ (1 − k)p − 1.

• an upper solution of the problem (25)-(27) if B
satisfies

B ≥ B1, , when −1 > n ≥ (1 − k)p − 1,
and
B ≥ B2, , when n ≤ (1 − k)p − 1.

We see that when n = (1 − k)p − 1, B1 = B2 =
B, where B is given by (36). As we have remarked
above, in this case we have an exact solution in the
form (28).

The upper and lower solutions can be used to ob-
tain suitable initial approximations for the application
of computational methods. On the other hand, we can
use them to apply the existence results obtained in
[10]. Actually, choosing an upper solution g1 and a
lower solution g2 of the form (28) the conditions of
proposition 2.1 of that work are satisfied and there-
fore the problem has at least one solution g, such that
g1 ≤ g ≤ g2. Hence, we conclude that the problem
(25)-(27) is solvable for p > 1, σ > −1, n < −1.
Note that the problem is also solvable in the case
−1 ≤ n < 0, but in this case the upper and lower
solutions must be sought with a different form.

5 Numerical results

Let us briefly describe the numerical algorithm we
used in order to obtain the approximate solutions of
problem (25)-(27). When p > 2 + σ, for given values
of a, n, r0, σ, we have considered two regular Cauchy
problems{

(|g′(r)|p−2 g′(r))′ = arσgn (r) , 0 < r < r0
2 ,

g(δ) = g1(δ, b), g′(δ) = g′1(δ, b)
(37){

(|g′(r)|p−2 g′(r))′ = arσgn (r) , r0
2 < r < r0,

g(r0 − δ) = gi(r0 − δ, c), g′(r0 − δ) = g′i(r0 − δ, c),
(38)

which we denote Problem A and Problem B, respec-
tively. Here i = 2 or 3, depending on n, δ is a small
constant. The functions g1, g2 and g3 are computed
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according to the formulae (5) ,( 13) and (14), respec-
tively, ignoring the remainders of the series. We solve
problems A and B for certain values of the parameters
b and c. With this purpose we use the program ND-
Solve of Mathematica. Then, following the idea of the
shooting method, we determine the values of b and c
so that g and g′ are continuous at r = r0/2. This gives
a system of two nonlinear equations, which is solved
by the Newton’s method.

When p ≤ 2 + σ, since we have no singularity
at r = 0, we solve the auxiliary problem (B) starting
from r0 − δ, for a certain value of the parameter c.
Then we compute c by the shooting method, requiring
that the boundary condition at r = 0 is satisfied.

In our calculations we have used δ = 0.001.
In figures 1,2 we plot some approximate solutions

of problem (25)-(27) for different values of σ, n, r0, a
and p.

1 2 3 4 5

1

2

3

4

Figure 1: Solution of the boundary value problem
with r0 = 5, σ = −0.5, n = −5

3 , a = −2, p = 4.

1 2 3 4 5

1

2

3

4

5

6

Figure 2: Solution of the boundary value problem
with r0 = 5, σ = 0.5, n = −0.6, a = −1, p = 1.8.

In table 1 we compare the computed values of the
solutions at r = r0/2 with the exact ones, in some
cases where the exact solution is known. The obtained
numerical results show that the used method has an
accuracy of about 8 digits.
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