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Abstract: - In this work, we revisit the robust stability margin optimization problem. Two robust controller 
designs are proposed for systems subject to bounded nonlinear time-varying uncertainty. The first method is a 
counterpart of  the well known D-K iteration procedure for μ  synthesis. The second method is a new one on the 
basis of a new bilinear matrix inequality (BMI) formulation. Comprehensive comparisons of the two methods 
are made and a numerical example is given to illustrate the results. 
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1   Introduction 
In 1985 the well known D  iteration [1] was 
proposed for designing robust controllers to meet a 
certain frequency-dependent scaled small gain 
condition [1] in order to make the systems robust 
against structured dynamic uncertainties. It has also 
been shown that the constantly scaled small gain 
condition is a necessary and sufficient condition for 
the nominal system to be uniformly robustly stable 
against the set of bounded nonlinear time-varying 
uncertainties [2]. While it has been addressed in [3] 
that the constant multiplier for the nonlinear 
perturbation case, i.e., the scaling for the scaled small 
gain condition, can be found via solving over a 
certain LMI, little attention has been paid toward the 
synthesis problem except [4,5]. In this paper, we’d 
like to treat the controller design problem in the 
passivity framework. New BMI formulation based on 
the recently developed approach [6] for the synthesis 
problem will be derived and different robust 
controller design methods based on iterative LMI 
(ILMI) method will be given. 

K−

The paper is organized as follows. Section 2 gives 
the formal problem statement and some preliminaries 
for future developments. Section 3 presents the two 
proposed approaches for the robust controller 
synthesis problem. In Section 4, a numerical example 
is provided to demonstrate the results. Section 5 is the 
conclusions. 

 
2   Problem Formulation 
Notation 
Most of the notation and terminology are standard 
and will be defined as the need arises. 

 
Table 1. 

 the set of real numbers 
*A  the complex conjugate transpose  

of A  
G  the  gain of a nonlinear time-varying 2L

operator 
( , )lF • • denotes the lower linear fraction  

representation, see [7]. 
ss  The state-space realization of ( )H s  is  

denoted as: 
A BH s ss C D
⎡ ⎤
⎢ ⎥⎣ ⎦

( ) . 

 
Problem Description 

The robust control paradigm considered is 
depicted in Fig. 1. 

Δ

( )P s

( )K s
y

z w

u

 
Fig. 1 P KΔ− −  framework 

 
Throughout this paper, we assume the uncertainty Δ  
belongs to the bounded nonlinear time-varying 
uncertainty set NLΔ  as follows,  
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1

is nonlinear, time-varying operator

1

L

NL i

diag

a

i L

δ δ

δ

⎧ ⎫
⎪ ⎪⎪,⎪Δ = ⎨ ⎬
⎪ ⎪
=⎪ ⎪⎩ ⎭

( , , ) ,

:

, ,

…

…

. 

Here, it means that NLΔ  can be specified by i iw ziδ= , 
where each single-input single-output nonlinear 
time-varying perturbation iδ  has an  gain less than 2L
γ . The symbol P  denotes the generalized plant, 
including the nominal plant, weighting functions, etc,  
described by  

1 2
1 11 12
2 21 22

x = Ax + B w + B u
P z = C x + D w + D u     

y = C x + D w + D u    

⎧⎪
⎨
⎪⎩

                          (1) 

where ,   , , Pnx∈ mw∈ unu∈ mz∈ , and 
 with yny∈ 1: Lm m m= + + . The symbol K  

denotes a dynamic controller of the form 
K K K K

K K K

x = A x + B y
K

 u = C x + D y 
⎧
⎨
⎩

                                               (2) 

where Knx∈ , to be designed. Our goal is to find a 
dynamic controller ( )K s  of form (2) to enlarge the 
robust stability margin [3], defined as the largest size 
of the structured uncertainties against which the 
system is robustly stable, of the perturbed system in 
Fig. 1. Specifically, for all NLΔ∈Δ  with γΔ ≤ (i.e., 

iδ γ≤  for all ) we want to design a dynamic 
controller of form (2) to maximize the value 

i
γ  such 

that the closed-loop system (1)-(2) is robustly stable.  
 

By [3] The robust controller synthesis problem we 
consider is to maximize the value γ  via finding a 
dynamic controller ( )K s  of form (2) and a 
generalized stability multiplier 

where ,  such 
that 

1 LW diag W W= ( , , )… iW ∈ 1i = , ,… L
M γ  is stable and the following conditions 

2M j W WM j Iγ γω ω ε∗+ >( ) ( ) ,                                            (3) 
0W > ,                                                                      (4) 

hold for some 0ε >  and for all , where { }ω∀ ∈ ∪ ∞

( )1: ( )( ) ,lM I M I M F P Kγ γγ γ −= − + = , and the sector 

transformed plant ★P Sγ = PΓ , where 

2

2
m m

m m

I I
S

I I

⎛ ⎞−
= ⎜ ⎟⎜ ⎟−⎝ ⎠

,  , 
0

0
y

m

n

I
I

γ⎛ ⎞
Γ = ⎜ ⎟⎜ ⎟

⎝ ⎠

and the symbol ★  means star product [7]. A tedious 
algebraic manipulation shows that 

( )P sγ

1 2

1 11 12

2 21 22

A B B
ss C D D

C D D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 
1

1 11 1( )A A B I D Cγ γ −= − + ;  
1

1 1 112 ( )B B I Dγ −= + ; 
1

2 2 1 11 1( )B B B I D Dγ γ −= − + 2 ; 
1

1 12 ( )C I Dγ γ −= − + 1 1C

)

; 
1

2 2 21 11 1( )C C D I D Cγ γ −= − + ; 
1

11 11 11( ) (D I D I Dγ γ−= + − ; 
1

12 11 122 ( )D I Dγ γ −= − + D ; 
1

21 21 112 ( )D D I Dγ −= + ; 
1

22 22 21 11 12( )D D D I D Dγ γ −= − + . 
 
3   Main Results 
In this section a new BMI formulation for the robust 
controller design problem mentioned in Section 2 is 
presented, where the LMI approach developed by 
Scherer et al [6] for computing a SPR dynamic 
controller will be used. Accordingly, two 
ILMI-based robust controller design procedures will 
be given on the basis of different ways of partitioning 
the BMI variables. 

To proceed, first, denote the set of all constant 
diagonal generalized multiplier W  to be  where NLΠ

{ }1 0 1NL
L idiag W W W i LΠ = > =( , , ) , , ,… … . It follows 

that the robust controller synthesis conditions: 
closed-loop stability , (3) and (4), can be 
reinterpreted as follows. 
 
Theorem 1. Given a positive value γ . The nominal 
system ( , )lF P K  described by (1) and (2) is 
uniformly robustly stable against the set of 
uncertainties NLΔ∈Δ  with size no greater than γ  if 
there exist a controller K  and a stability multiplier 

 satisfying: W
(i) NLW ∈Π , 
(ii) ˆ( , )( )lF P K sγ  is strictly positive real,  

where ( )ˆ ( ) ( ) ,P s P s diag W Iγ γ= . 
 

Next we attemp to adopt the LMI approach 
developed by Scherer et al [6] for computing the SPR 
dynamic controller. Since the direct through part 
“ ” of 22D Pγ̂  is not necessarily null, a suitable loop 
transform is required to circumvent the difficulty. 
This can be done by defining 

11 12

21 22

1 2

1 11 12
22

2 21 0

A B BP P
P ss C

P P D C D

γ γ
γ

γ γ

⎡ ⎤
⎛ ⎞ ⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟− ⎢ ⎥⎝ ⎠

⎣ ⎦

: D D  

and 
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( ) 1
22:eqK K I D K

−
= − . 

Thus  

l lF P K F P Kγ γ=ˆ( , ) ( , )eq , where (P P diag W Iγ γ= ⋅ , ) , in 
which the direct through part “ ” of 22D Pγ  is null. 
Now it’s ready to the method by Scherer et al [6], this 
leads to the following BMI formulation for the 
synthesis problem: Maximize the value γ  subject to 
the following BMIs (5)-(7), i.e., maximize γ  subject 
to the existence of the matrix variables W , X , Y , 
Â , , , B̂ Ĉ D̂  satisfying the following BMIs. 

0W >                                                                                 (5) 
X I

> 0
I Y

⎡ ⎤
⎢ ⎥
⎣ ⎦

                                                                    (6) 

1 1 1 2 1 3
2 2 2 3 0

3 3

( , ) ( , ) ( , )
* ( , ) ( , )
* * ( , )

⎡ ⎤
⎢ <⎢
⎢ ⎥⎣ ⎦

⎥
⎥

ˆ

                                       (7) 

where 

 

2 2

2 2

1 2 21 1 12

2 2

1 21 1 2 12

11 12 21 11 21

1 1

1 2

1 3

2 2

2 3

3 3

ˆ ˆ( , ) :
ˆ ˆ( , ) :

ˆˆ( , ) : ( )
ˆ ˆ( , ) :

ˆ ˆ( , ) :
ˆ( , ) :

T T T

T

T

T T

T T T T

T T T T T

AX XA B C C B

A A B DC

B W B DD W C X D C

A Y YA BC C B

YB W BD W C C D D

D W D DD W W D W D D D

= + + +

= + +

= + − +

= + + +

= + − −

= − − − − 12
T

where , m mW ×∈ P Pn nX ×∈ , P Pn nY ×∈ , P Pn nA ×∈ˆ , 
P un nB ×∈ˆ , ,y Pn nC ×∈ˆ y un nD ×∈ˆ , and the symbol *  is 

readily inferred by symmetry.  
There has not yet an efficient algorithm for solving 

general BMI problem, instead, ILMI method is 
widely used for solving the BMI problems. In the 
following, we present two ILMI-based robust 
controller design methods on the basis of different 
ways of partitioning the BMI variables. 
 
Method 1: 

In this method, the BMI variables are partitioned 
into two groups, the group W  and the group X , Y , 
Â , , , B̂ Ĉ D̂ , and compute iteratively. The detailed 
synthesis procedure is outline in the following 
algorithm.  
 
Algorithm 1: 
Step 1. Suppose the generalized plant ( )P s  is given; 

then the controller K  can be computed via H∞  
theory. A lower bound of the robust stability 
margin γ  can be estimated accordingly. 

1.1 Compute an initial controller K  where 

K K

K K

A B
K ss

C D
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

via H∞  theory with respect to the generalized 
plant P ; then estimate the stability margin γ . 

1.2 Compute 

1

22

0 0
0

eq eq

eq eq

K K

eq
K K

K K K K

K K K K

A B
K ss

C D

A B A B
I

DC D C D

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡⎡ ⎤
= −

⎤
⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

:

 

1.3 Compute  

11 12

21 22 22
( )

P P
P

P P P
γ γ

γ
γ γ γ

⎛ ⎞
⎜ ⎟

⎟
=
⎜ − ∞⎝ ⎠

1 2

1 11 12

2 21 0

A B B
C D D
C D

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Step 2. Compute generalized stability multiplier W  
with increasing stability margin γ  where the 
equivalent controller eqK  is fixed. 

2.1 Increase γ ; then compute , 
afterward, solve the following equations,  

l eM F P Kγ γ=: ( , q )

0W > ;                                                            (8) 

( ) 0
2

T T
MM M M

T T
M M M M

A Q QA B W QC

WB QC I D W WD

γγ γ γ

γ γ γ γ
ε

⎛ ⎞+ −
⎜ ⎟ ≤⎜ ⎟− − +⎜ ⎟
⎝ ⎠

     (9) 

with P Kn nQ +∈  being the symmetric matrix 
and 0ε > . 

2.2 Solve (8) and (9) for the stability multiplier, if 
feasible, back to step 2.1 till there is no 
significant increase in γ . 

Step 3. Solve (6)-(7) for variables X , Y , Â , , , B̂ Ĉ
D̂  with increasing stability margin γ  where    
are fixed. 

W

3.1 Increase γ ; then compute A , , , , , 1B 2B 1C 2C

11D , 12D , 21D , 22D . 
3.2 Solve (6) and (7) for variables X , Y , Â , , 

, 
B̂

Ĉ D̂ , if feasible, back to step 3.1 till there is 
no significant increase in γ . 

Step 4. Repeat step 2 and step 3, till the robustness is 
achieved or there is no significant increase in γ . 
Then, we can obtain a controller eqK ; afterward, 
the resulting controller is given 
by ( )-1eq 22 eqK = K I + D K , in state space 

representation 
1

22

0 0
0

eq eq eq eq

eq eq eq eq

K K K K

K K K K

A B A B
K ss I

DC D C D

−
⎡ ⎤⎡ ⎤ ⎡⎡ ⎤ ⎤
⎢ ⎥⎢ ⎥ ⎢+⎢ ⎥ ⎥
⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

with 
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( )
( )

( )

2

1
2

2 21

2 2

eq

eq

eq eq

eq eq

eq

eq

K

T
K

K K

T
K K T

K
K

D D

C C DC X M

B N B YB D

A NB C X YB C M
A N M

Y A B D C X

−

−

−

=

= −

= −

⎡ ⎤− − −
⎢= ⎢

+⎢⎣

ˆ ;

ˆ ˆ ;

ˆ ;

ˆ
.−⎥

⎥
⎥⎦

 

where  and N M  so that TMN I XY= −  
(e.g., , N I= M I XY= − ).  

 
 

Method 2: 
In this method, the BMI variables are partitioned 

into two groups, the group W , X , Â ,  and the 
group

Ĉ
X , Y , Â , , , B̂ Ĉ D̂ , and compute iteratively. 

The synthesis procedure is similar to Algorithm 1. .  
 

 
Step 4. Solve (5)-(7) for variablesW , X , Â ,  with 

increasing stability margin 
Ĉ

γ  where , , B̂ Y D̂  are 
fixed. 

4.1 Increase γ ; then compute A , , , , , 1B 2B 1C 2C

11D , 12D , 21D , 22D . 
4.2 Solve (5) and (7) for variables W , X , Â , , if 

feasible, back to step 3.1 till there is no 
significant increase in 

Ĉ

γ . 
Step 5. Repeat Step 3 and Step 4, till the robustness  
is achieved or there is no significant increase in γ .  

 
The resulting controller can be computed by the 
formula described in Step 4 of Algorithm 1. 
 
Remark 1. There exist several other iterative 
schemes for solving the robust controller design 
problem in the derived BMI formulation as long as 
each of the following two groups of variables, (Y , 

, B̂ D̂ ) and W , is solved in different phase. Note that 
the variations of the proposed methods stem from 
that the variables, X , Â , , can be either set free to 
solve or kept fixed in each individual phase. It is 
noted that the methods derived from the concept we 
pointed includes method 1 as a special case, whcih is 
simply the counterpart of the well known 

Ĉ

D K−  
iteration. 
 
Remark 2. For some practical problems, e.g., the 
flexible mechanical system example presented in  
[8], the generalized plants have the special property 
that . As can be checked, this additional 

information makes the term 

21 0D =

21D  null too, which in 
turn eliminates several nonlinear coupled terms in (6) 
and (7). Thus the only constraint for applying ILMI 
method to solve the BMIs (6),(7) is to solve the 
variables Y  and  in different phases. Moreover, 
each of the rest of the variables 

W
X ,  Â , , , B̂ Ĉ D̂  

can be either treated as a variable to solve or kept 
fixed as a constant in each phase. With these 
observations, several iterative (synthesis) schemes 
like method 1 are possible for this class of special 
cases. 
 
Remark 3. An equivalent condition to Theorem 1 (ii) 
is that ˆ( , )( )lF P K sγ  is strictly positive real, where 

( )ˆ ( ) , ( )P s diag W I P sγ = γ

1 3 ˆ( , ) ( )TB B DD WC X W= + − +

2 3 ˆ( , ) YB BD= +

. With the same derivation, 
this lead to another BMI formulation for the robust 
controller synthesis problem. Specifically, some 
terms are replaced as follows: 

1 2 21 1 12
ˆD C ; 

1 21 1 2 12
ˆT T T T T TC W C D D W− − ; 

113 3( , ) WD= − − 12 21
ˆWD DD 11

T TD W− 21 12
ˆT T T TD D D W− . 

Again, there exist several other iterative schemes for 
solving the robust controller design problem in the 
BMI formulation as long as each of the following two 
groups of variables, ( X , C , ˆ D̂ ) and W , is solved in 
different phase. Note that the variations of the 
proposed methods stem from that the variables, Y , 
Â , , can be either set free to solve or kept fixed in 
each individual phase. Similrly, for the special case 

B̂

12 0D = , the only constraint for applying ILMI 
method to solve the BMIs (6),(7) with the necessary 
replacement described above is to solve the variables 
X  and W  in different phases. 

 
Remark 4. One of the advantages brought by the 
LMI approach developed by Scherer et al [6] is that 
strict properness of the resulting controller can be 
guaranteed if it is required. This can be done simply 
by setting 0D̂ =  (thus , which in turn 
implies that 

0( )eqK ∞ =

0( )K ∞ = ) in (6) and (7). 
 
Remark 5.  While method 1 is the counterpart of the 
well known D K−  iteration which alwayes computes 
the multiplier and the controller in different phase, 
method 2 provides a mechanism for the constant 
multiplier and part of the controller parameters (i.e., 
X , Â , ) to trade off in a single phase. This results 
in different controllers which may provide better 
performance. 

Ĉ
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4   Numerical Example 
Consider a perturbed negative feedback system as 
depicted in Fig. 4,  

 

r y Ky Py
K 0P

 
Fig. 4. perturbed negative feedback system 

 
where the perturbed plant  is a second-order linear 
time-invariant system with nonlinear time-varying 
uncertainties 

0P

, 1,2i iδ = , which has the following 
state-space representation. 

( )
2

1

03 3 1
1 0 0

1 2 0

P P

P P

Kx x y

y x

⎧ ⎛ ⎞− ⎡ ⎤⎡ ⎤ ⎡ ⎤= + +⎪ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎨
⎪ = + Δ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎩

 

In terms of the standard P KΔ − −  framework where 
( )1 2: ,diag δ δΔ = , the generalized plant  is given by 

3 3 0 0 1
1 0 0 1 0
0 1 0 0 0
0 0 0 0 1

1 3 1 0 0

( )P s

−⎡ ⎤
⎢ ⎥
⎢ ⎥↔ ⎢ ⎥
⎢ ⎥
− − −⎢ ⎥⎣ ⎦

 

According to , we can obtain the numerically 
computational data (i.e. stability margin 

( )P s
γ , 

generalized stability multiplier W  and controller K ) 
in Table 2  by applying  H∞  control theory, method 1 
and method 2. 
 

Table 2 
H∞  control theory 
γ  0 1839.  
W  None 
K  

2
7335 2 27802

1367 6 2142 7
.

. .
s

s s
+

+ +
 

Method 1 
γ  0 2148.  
W  0 38329 0

0 6 5206
.

.
⎡ ⎤
⎢ ⎥⎣ ⎦

 

K  2

2
4 24 6403 4 24103

437 56 1235 7
. .

. .
s s

s s
+ +

+ −
 

Method 2 
γ  0 2278.  
W  0 022825 0

0 0 32629
.

.
⎡ ⎤
⎢ ⎥⎣ ⎦

 

K  

Compared to the result of H∞  control theory, it 
shows that method 1 and method 2 yield a much 
better value in γ .   

 
5   Conclusion 
In this work, a new BMI formulation was established 
for the robust controller design for the systems with 
bounded nonlinear time-varying uncertainties. 
Different synthesis schemes were proposed. 
Specifically, the BMI variables were divided into two 
groups and solved iteratively over LMIs in separate 
phases. Particularly, it is noted that the counterpart of 
the well known D K−  iteration is a special case of 
the methods we proposed. In addition, the advantage 
of applying the work by Scherer et al was revealed. 
The given numerical example showed the 
effectiveness of the proposed methods. 
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