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Abstract: - In this work, we propose two robust controller design methods based on new iterative schemes for 

the systems with real parametric uncertainties. The methods are derived on the basis of a recently developed 

method for computing optimal stability multipliers. The salient property that there is no need to choose the poles 

of the multipliers a priori is retained. Beside the benefit of that the controller order would not increase without 

bounds, a hybrid combination of the proposed methods is possible. Comprehensive comparisons of the proposed 

methods and those designs which mimic the well known D-K iteration are made. A numerical example is given 

to illustrate the results.  
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1   Introduction 
µ  synthesis is  [1-6] is a powerful tool for designing 

robust controllers for systems subject to multiple 

sources of parametric and/or dynamic uncertainties. 

In 1985 the well known D-K iteration [1] was 

proposed to produce robust controllers for the 

systems with structured dynamic uncertainties, which 

is essentially based on iterating between the analysis 

phase of computing the complex µ  upper bound (or 

the optimal multipliers) with the controller fixed, and 

the synthesis phase of H∞  optimization with the 

multiplier fixed.  

 In early research curve fitting is widely used in the 

analysis phase, however, error might occur due to 

approximation. Later, two basis function methods 

were proposed in Ly et al [7] and [8]. While curve 

fitting of the scalings is no longer required and good 

estimates of the µ  upper bound could be rendered by 

both of the methods, both of them rely heavily on a 

proper choice of the bases, equivalently, the choice of 

the poles of the multipliers. Later, in [9] a skillful 

LMI method was proposed for computing the optimal 

multipliers. Particularly, there is no need to choose 

the poles of the multipliers a priori, yet a lower bound 

constraint on the multiplier order (at least as large as 

the order of closed-loop system) is assumed for the 

approach. This generally improves the computation 

of the real µ  upper bound. New robust controller 

design based on the method [9] has been presented in 

[6], which inherits the advantage of [9] at the expense 

that the order of the resulting controllers dramatically 

increases as the iteration number of the synthesis 

procedure goes up.  Therefore, it is our purpose to 

propose new robust controller design to alleviate the 

problem. The paper is organized as follows. Section 2 

gives the formal problem statement and some 

preliminaries for future developments. Section 3 

presents the two proposed approaches for the robust 

controller synthesis problem. Comprehensive 

comparisons of the controller designs are made. In 

Section 4, a numerical example is provided to 

demonstrate the results. Section 5 is the conclusions. 

 

2   Problem Formulation 
Notation 

Most notation used in this paper is fairly standard, see  

e.g., [6] . 

 

Problem Description 

The P K∆ − −  paradigm is considered, where it is 

assumed throughout that ∆  belongs to the parametric 

structured uncertainty set defined as follows: 

{ }
11 1

Lr m L m iblock diag I I R i Lδ δ δ∆ = − ∈ =: ( , , ) : , , ,… …  

The symbol P  denotes the generalized plant, 

including the nominal plant, weighting functions, etc,  

described by 

1 2

1 11 12

2 21 22

    
      

x Ax B w B u
P z C x D w D u

y C x D w D u

= + +
= + +

= + +

ɺ

                       (1) 

where Pnx∈ℝ ,  mw∈ℝ  , unu∈ℝ , mz∈ℝ , and 
yny∈ℝ  with 

1
:

L
m m m= + +⋯ . The symbol K  

denotes a dynamic controller of the form 
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 u = C  

K K K K

K K K

x A x B y
K

x D y

= +


+

ɺ
                                            (2) 

where Kn

K
x ∈ℝ , to be designed. Our goal is to find a 

dynamic controller ( )K s  of form (2) to enlarge the 

robust stability margin of the perturbed system in Fig. 

1. Specifically, for all r∆∈∆  with γ∆ ≤ (i.e., 

iδ γ≤  for all i ) we want to design a dynamic 

controller of form (2) to maximize the value γ  such 
that the closed-loop system (1)-(2) is robustly stable. 

To reduce the conservatism, an improved 

technique which employs passivity theorem with 

multipliers has been addressed in [2,4,8,10], as 

shown in Fig. 2, where 1 1 1( )( )I Iγ γ− − −∆ = + ∆ − ∆ɶ , and 

( )1
: ( )( ) ,

l
M I M I M F P Kγ γγ γ −= − + =ɶ ɶ  [4]. 

 

∆ɶ

( )P sγ
ɶ

-1

( )
L

W s

1( )
L

W s − 1( )
R

W s −

( )
R

W s

( )M sγ
ɶ

( )K s

 
Fig. 2 Passivity framework with multipliers 

 

It is easy to check that for any r∆∈∆  with γ∆ ≤ , 

∆ɶ  is a constant diagonal matrix with entries in 

)0, ∞ . A well known sufficient condition for the 

robust synthesis problem is thus to maximize the 

value γ  via finding a dynamic controller ( )K s  of 

form (2) and suitable stability multipliers ( )
L

W s  and 

( )
R

W s  in the set ( )RS RF , satisfying (i) 
L

W , 
R

W , 1

L
W −  

and 1

R
W −  are in RH∞ , (ii) L R

W W  is strictly positive 

real (SPR), and (iii) 1 1

L R
W M Wγ

− −ɶ  is SPR [4]. By letting 

1 ~
R LW W W−=  (possibly non-causal), it has been shown 

in [2,4,8,10] that the conditions described above are 

equivalent to the following frequency domain 

conditions with ( ),
l

M F P Kγ γ=ɶ ɶ  which must hold for 

some 0ε >  and for all { }ω∀ ∈ ∪ ∞ℝ , 

2M j W j W j M j Iγ γω ω ω ω ε∗ ∗+ >( ) ( ) ( ) ( ) ,ɶ ɶ                (3) 

0W j W jω ω ∗+ >( ) ( ) .                          (4) 

In summary, the robust synthesis problem we 

consider is to maximize the value γ  via finding a 

dynamic controller ( )K s  of form (2) and a 

generalized stability multiplier ( )RW S RF∈  such 

that conditions (3) and (4) hold. For the latter 

development, it is required to know the state-space 

realization of the sector transformed plant 

P Sγ =ɶ G PΓ , where 

2

2

m m

m m

I I
S

I I

 −
=  

 − 
,  

0

0
y

m

n

I

I

γ 
Γ =   

 
 

and the symbol G means star product [11]. A tedious 

algebraic manipulation shows that 

( )P sγ
ɶ

1 2

1 11 12

2 21 22

A B B

ss C D D

C D D

 
 
 
 
 

ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ

 

where 
1

1 11 1
( )A A B I D Cγ γ −= − +ɶ ; 

1

1 1 11
2 ( )B B I Dγ −= +ɶ ; 1

2 2 1 11 12
( )B B B I D Dγ γ −= − +ɶ ; 

1

1 11 1
2 ( )C I D Cγ γ −= − +ɶ ; 1

2 2 21 11 1
( )C C D I D Cγ γ −= − +ɶ ; 

1

11 11 11
( ) ( )D I D I Dγ γ−= + −ɶ ; 1

12 11 12
2 ( )D I D Dγ γ −= − +ɶ ; 

1

21 21 11
2 ( )D D I Dγ −= +ɶ ; 1

22 22 21 11 12
( )D D D I D Dγ γ −= − +ɶ

. 
 

Method 1: 

The design procedure of method 1 involves iterations 

between computing the real µ  upper bound (analysis 

phase) and solving for a SPR controller (synthesis 

phase) [12,13]. For details, see [6]. 

 

Method 2: 

The design is similar to method 1. The only 

difference is the replacement of the analysis phase 

with the method proposed in [9]. A brief review of 

the approach [9] is introduced as follows: Consider 

the stable system : ( , )lM F P Kγ γ=ɶ ɶ . As before, let 

M
n

γɶ
denote the order of the stable system Mγ

ɶ  and 

Wn  denote the order of generalized stability 

multiplier W  to be computed. Under the constraint 

MW P Kn n n n
γ

=≥ +ɶ where 
p
n  and 

K
n  denote the order 

of the generalized plant P  and the controller K  

respectively, suppose that there exist a positive 

number ε , matrices ( ) ( )P K P Kn n n nTP P
+ × += ∈ℝ , and 

block-diagonal matrices W Wn n
X

×∈ℝ , Wm n
Y

×∈ℝ , 
W Wn nT

W W
P P

×= ∈ℝ , Wn m

W
B

×∈ℝ , m m

W
D ×∈ℝ , with WP  

non-singular, such that the following LMIs hold 

 

0
2 ( )

T T
W

T T
W W W

X X B Y

B Y I D Dε

 + −
< 

− − +  
                    (5) 

11 12

12 22

0T

L L

L L

 
< 

 
                              ( 6 ) 

where 
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0 0

11

0 0*

r r

r r r r

T T T T
WM M

T T T T
M M M M

X X Y B P A X
L

PA A P Y B B Y

 + + Γ + Γ
 =
 + + Γ + Γ
 

ɶ ɶ

ɶ ɶ ɶ ɶ

; 

0

12

0

r r

r r r

T T T
W WM M

T T T T
WM M M

B Y D P C
L

B D Y D PC

 − − Γ
 =
 − Γ −
  

ɶ ɶ

ɶ ɶ ɶ

; 

22 2
r r

T T
W WM M

L I D D D Dε= − −ɶ ɶ
; 

0
0

( )
: W P Kp K n n nn n

I
R

× ++ 
Γ = ∈ 

 
. 

 

Then 1( ) : ( )
W W W

W s Y sP X B D−= − +  is a generalized 

stability multiplier satisfying conditions (3) and (4). 

In comparison with [8] in which the poles are chosen 

by ad hoc work, the method in [9] has the advantage 

of not necessary to choose the multiplier poles a 

priori, which in turn could reduce the conservatism of 

computing optimal multipliers and thus gets a tighter 

estimate of the robust stability margin. However, the 

price is that the order of the resulting controllers by 

method 2 dramatically increases as the iteration 

number of the synthesis procedure goes up. To 

alleviate this problem a new procedure employing a 

fixed-order controller synthesis scheme is proposed 

on the basis of the analysis conditions (5)-(6). 

 

 

3   Main Results 
In this section we present two design methods 

originating from the analysis condition presented in 

[9] which leads to a nonlinear optimization problem 

involving bilinear matrix inequalities (BMIs) when 

controller synthesis is considered. On the basis of the 

new BMI formulation, different ways of partitioning 

the BMI variables into two groups are discussed and 

iterative LMI (ILMI) method is introduced to solve 

the problem. Algorithms based on state-space 

manipulation will be given and comprehensive 

comparison between the proposed methods and the 

two D-K iteration like synthesis methods presented in 

[6] will be provided. 

To proceed, let eqQ  be the system matrix of the 

transformed controller Keq  where 

( ) 1
22K K I D Keq

−
= − ɶ ; it follows that the closed-loop 

system ( , )
l eq

M F P Kγ γ=
⌣

ɶ  has the following system 

matrix depending affinely on 
eq

Q . 

( ) ( )

( ) ( )

eq eqM M

eq eqM M

A Q B Q

C Q D Q
γ γ

γ γ

 
 
  

ɶ ɶ

ɶ ɶ

 

with 

2

2

000

000 0
( )eq eqM

IBA
A Q Q

CIγ

     
= +     

   
ɶ

ɶ ɶ

ɶ

 

1 2

21

00

0 0
( )eq eqM

B B
B Q Q

DIγ

     
= +     

    
ɶ

ɶ ɶ

ɶ

 

1 12
2

0
0 0

0
( )eq eqM

I
C Q C D Q

Cγ

 
   = +    

 
ɶ

ɶ ɶ
ɶ

 

11 12
21

0
0( )eq eqM

D Q D D Q
Dγ

 
   = +     

 
ɶ

ɶ ɶ
ɶ

 
Substituting the above information into (5) and (6), 

the robust stability margin optimization problem 

becomes a nonlinear optimization problem subject to 

BMI constraints as described as follows: 

 

Maximize γ  in the variables ε  (a positive number), 

the block-diagonal matrix variables W Wn n
X

×∈ℝ , 
W Wn n

Y
×∈ℝ , 

W Wn nT

W W
P P

×= ∈ℝ , ( ) ( )P K P Kn n n nT

M M
P P

γ γ

+ × += ∈ɶ ɶ ℝ , 

W Wn m

W
B

×∈ℝ , W Wp n

W
D

×∈ℝ , matrix variables eqQ  and 

( ) ( )P K P Kn n n nTP P
+ × += ∈ℝ subject to the following BMI 

constraints (7)-(10). 

 

0
M
P

γ
>ɶ                                                                     (7 ) 

( ) 0( ) ( )
T

eq eqM M M M
P A Q P A Q

γ γ γ γ
+ <ɶ ɶ ɶ ɶ                (8) 

0
2 ( )

T T
W

T T
W W W

X X B Y

B Y I D Dε

 + −
< 

− − +  
                          (9) 

11 12 13

12 22 23

13 23 33

0T

T T

G G G

G G G

G G G

 
 

< 
 
 

                                           (10) 

where 

11
TG X X= +: ; 

12 0 0
r r

T T T
eq W eqM M

G Y B Q P A Q X a= + Γ + Γ: ( ) ( )ɶ ɶ
; 

13 0
r r

T T T
W eq W eqM M

G B Y D Q P C Q= − − Γ: ( ) ( )ɶ ɶ
; 

22

0 0

r r

r r

T
eq eqM M

T T T
eq eqM M

G PA Q A Q P

Y B Q B Q Y

= +

+ Γ + Γ

: ( ) ( )

( ) ( )

ɶ ɶ

ɶ ɶ

; 

23 0
r r r

T T T T
eq W eq eqM M M

G B Q D Y D Q PC Q= − Γ −: ( ) ( ) ( )ɶ ɶ ɶ ; 

33 2
r r

T T
eq W W eqM M

G I D Q D D D Qε= − −: ( ) ( )ɶ ɶ . 

Since there is no efficient algorithm for solving 

general BMIs, instead we use ILMI method by which 

the relevant LMI problem of each phase can be 

efficiently solved by the existing softwares, e.g., 

[14]. Following this thought, how to partition the 

BMI variables X , Y , WP , P ,
M
P

γ
ɶ , WD , WB , eqQ  into 

two groups of variables matters much. By inspection, 

it is easy to find that one of the following two groups 
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of variables, (Y , WP , P ,
M
P

γ
ɶ , WD ) and eqQ , should be 

kept fixed when the other one is to be solved. 

Furthermore, the rest of the variables, X and WB , can 

be either set free to solve or kept constant in each 

phase. With these observations, two fixed-order 

robust controller synthesis methods are proposed as 

follows. 

 

Method 1: 

The method involves iteratively solving the two 

groups of variables, ( X , Y , WP , P ,
M
P

γ
ɶ , WD , WB ) 

and eqQ , i.e., alternatively computing the optimal 

multipliers in one phase and the controller in another 

phase. A detailed synthesis procedure is outlined in 

the following algorithm. 

 

Algorithm 1: 

1. Compute a suboptimal H∞ controller K  such that 

the value γ  which satisfies ( , ) 1F P Kγ
∞
<  is 

maximized. Then compute ( ) 1

22eqK K I D K
−

= − ɶ . 

2. Maximize γ  by solving (7)-(10) where the 

transformed controller eqK  (i.e., eqQ ) is kept 

fixed. The details are as follows: 

2.1 Increase γ . Compute ( )eqM
A Q

γ
ɶ , 

( )eqM
B Q

γ
ɶ , ( )eqM

C Q
γ
ɶ , ( )eqM

D Q
γ
ɶ . Set 

0
0

( )
: W P Kp K n n nn nI

R
× ++ 

Γ = ∈ 
 

. 

2.2 Solve (7)-(10) for the variables X , Y , 

WP , P , 
M
P

γ
ɶ , WB , WD  and ε . Back to step 

2.1 till there is no significant increase in γ . 

3. Maximize γ  by solving (8)-(10) where the 

variables X , Y , WP , P , 
M
P

γ
ɶ , WB , WD  are kept 

fixed. The details are as follows: 

3.1 Increase γ . 

3.2 Solve (8)-(10) for the variables eqQ  and ε . 

Back to step 2.1 till there is no significant 

increase in γ . 

4. Repeat step 2 and step 3, till there is no significant 

increase in γ . 
5. The resulting controller is given by 

( ) 1

22eq eqK K I D K
−

= + ɶ . 

 

Method 2: 

The method involves iteratively solving the two 

groups of variables, ( X , Y , WP , P , 
M
P

γ
ɶ , WB , WD ) 

and ( eqQ , X , WB ). The design procedure is quite 

similar to Method 1 except that in step 3.2 of 

Algorithm 1 two more variables, X , WB , are 

considered and computed. 

 

Remark 1. Method 2 is quite similar to method 1 

except that there are two more variables X , WB  for 

consideration in the phase of computing a new 

controller. Theoretically, this implies that method 2 

would get better γ  than method 1 when the 

multipliers obtained in the previous step were the 

same. On the other hand, while both of the methods 

were derived from the same thought with different 

groups of variables to be computed in the controller 

searching phase, it is noted that there exist other 

iterative schemes as long as each of the following 

two groups of variables, (Y , WP , P ,
M
P

γ
ɶ , WD ) and 

eqQ , was solved in different phase; for example, 

iteratively computing the two groups of variables, 

( X , Y , WP , P , 
M
P

γ
ɶ , WD ) and ( eqQ , WB ). Note that 

the variations of the proposed methods stem from 

that the variables, X  and WB , can be either set free 

to solve or kept fixed in each individual phase. 

 

Remark 2. For some practical problems, e.g., the 

flexible mechanical system example presented in  

[3], the generalized plants have the special property 

that 21 0D = . As can be checked, this additional 

information reduces several nonlinear coupled terms 

in (16) to be affinely dependent only upon a single 

variable. Specifically, with 21 0D =  the term 
21

Dɶ  is 

null too (check the formula in Section 2), which in 

turn implies that the terms 
M
B

γ
ɶ  and 

M
D

γ
ɶ  are no 

longer dependent upon eqQ . In order to solve the 

BMIs (14) and (16) by iterative LMI method, one has 

to solve the group of variables ( WP , P ,
M
P

γ
ɶ ) and eqQ  

in different phase. While this is the only constraint 

for applying ILMI method to solve the BMI problem, 

each of the rest of the variables X ,Y , WD , and WB  

can be either treated as a variable or kept fixed as a 

constant in each phase. With these observations, 

several iterative (synthesis) schemes like method 2 

are possible for this class of special cases. 

 

A serial of remarks comparing the proposed methods 

in this paper and those in [6] are as follows. 

 

Remark 3. While D-K iteration as well as the two 

methods proposed in [6] and method 1 of this paper 

involve iteratively solving the multiplier and the 
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controller in different phases, there is no direct trade 

off between the two phases. From this viewpoint, it is 

interesting to note that method 2 provides a new 

scheme for controller synthesis. Specifically, a phase 

of method 2 involves solving the variables eqQ , X , 

and WB  in which the variable eqQ  is directly linked 

to the controller parameters and the variables X , and 

WB  represent part of the multiplier parameters since 

the generalized stability multiplier is given by the 

formula 1( ) : ( )
W W W

W s Y sP X B D−= − +  [9]. This 

indicates that method 2, in sharp contrast with the 

conventional schemes, introduces a new mechanism 

which allows direct trade off between the controller 

and part of the multiplier parameters in a single 

phase. 

 

Remark 4. Method 1 of [6] successfully combines 

the method of [8] searching for suitable multipliers 

with the method [12] for computing a SPR controller 

to yield a robustly stabilizing controller. Since the 

order of the multipliers can be kept fixed, the order of 

the resulting controllers would keep fixed as well. 

However, one drawback of the method is that the 

poles of the multipliers have to be selected a priori 

which is usually by ad hoc work. Method 2 of [6] 

alleviates this drawback by employing the method 

presented in [9] for searching suitable multipliers. 

But the order of the resulting controllers would 

dramatically increase as the iteration number goes 

up. In comparison with method 1 and method 2 of 

[6], method 1 and method 2 of this paper were 

proposed to preserve the advantages of the method [9] 

while keeping the order of the controllers fixed. In 

addition, spectral factorization is not required in the 

design procedures of the  two methods which in turn 

reduces the computational load. 

 

Remark 5. Robust stability margin could be 

enlarged by increasing the order of the controllers. A 

lot of combinations of the proposed methods 

aforementioned can be considered. For example, one 

may take controllers obtained at certain iteration of 

method 1 and method 2 of [6], then computes the 

robust stability margin by [9], and then applies 

method 2 of this paper. Similarly, stability margin 

could be enlarged by increasing the order of the 

generalized multipliers. 

 

4    Numerical Example 
Consider the example taken from [6]. For ease of 

exposition, method 1 and method 2 is referred to 

method 1 and method 2 of [6], and method 3 and 

method 4 is referred to method 1 and method 2 of this 

paper. Application of the H∞  control theory yields a 

lower bound of the stability margin as 0.6781γ =  (the 

inverse of the resulting H∞  norm). The numerical 

data obtained by applying the four proposed robust 

controller designs in this paper is listed in Table 1. 

The number in the parentheses indicates the number 

of iterations of each synthesis procedure at which it 

terminates (i.e., there is no significant increase in γ ). 

In method 1 generalized stability multipliers of order 

four with all of the poles assigned at -1 are used to 

estimate the robust stability margin. Method 2 

outperforms method 1 a little bit. This might be 

attributed to that method 2 utilizes a more flexible 

method [9] to estimate the real µ  upper bound (i.e., 

the inverse of the bound is a lower bound of the 

stability margin). However, as expected the order of 

the resulting controller at the 3rd iteration of method 

2 is as high as 10. The corresponding generalized 

stability multiplier also has order as high as 12. In 

comparison with method 1 and method 2, while the 

order of the controllers and the generalized stability 

multipliers (see the third column of Table 1) by 

applying method 3 and method 4 is much smaller and 

kept fixed during the design process, the estimates of 

stability margin are approximately the same. This 

implies that method 3 and method 4 provide good 

lower order controller design for this example. 

 

Table1. 

Stability margin Order 
 γ  ( Kn , Wn ) 

H∞  control 0.6781 (2,none) 

Method 1 0.7399(4
th
) (6,4) 

Method 2 0.7424 (3
rd
) (10,12) 

Method 3 0.7372(6
th
) (2,4) 

Method 4 0.7465(6
th
) (2,4) 

 

Robust stability margin could be enlarged by 

increasing the order of the controllers. This can be 

done by considering a hybrid combination of the 

proposed methods. For illustration, we take 

controllers obtained from method 1 and method 2, 

then compute the stability margin by [9], and then 

follow the application of method 4. Note that in the 

first row of Table 2, we take the controller obtained at 

the 2
nd
 iteration method 1. Then applying method 4 

yields a much better value 0.7533γ =  at the 6
th
 

iteration. The order of the resulting controller and the 

generalized stability multiplier are 6 and 8, 

respectively. The detailed numerical results are 

presented in Table 2, which show that the results by 
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applying the hybrid methods are even better than 

those of the original ones as listed in Table 1. 

 

Table 2. 

Stability margin Order  
γ  ( Kn , Wn ) 

Method 1(2
nd`
) + 

Method 4 
0.7533 (6

th
) (6,8) 

Method 1(3
rd
) + 

Method 4 
0.7665(6

th
) (6,8) 

Method 2(2
nd
) + 

Method 4 
0.7606 (6

th
) (6,8) 

Method 2(3
rd
) + 

Method 4 
0.7635(6

th
) (10,12) 

 

5    Conclusions 
Two robust controller designs are proposed for 

systems subject to real parametric uncertainties. New 

BMI formulation was established and different 

iterative LMI schemes were provided to solve the 

BMI problem via efficient convex programming. No 

curve fitting and spectral factorization are required. 

Furthermore, the difficulty of selecting the poles of 

the generalized stability multipliers (usually by ad 

hoc work) is prevented. Comprehensive comparisons 

concerning the order of the resulting controllers and 

the multipliers as well as the poles of the multipliers 

for the proposed methods and those mimic the well 

known D_K iteration were made. Hybrid 

combination of the proposed methods is possible. 

The presented numerical example demonstrated the 

effectiveness of the proposed methods. 
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