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Abstract: - This paper presents a numerical study of particle trapping using quadrupole microfludic 
dielectrophoretic device. By taking into account the dielectrophoreis, viscous drag, the trajectory of particles 
flowing through the quadrupole device was obtained. Simulation results show that the device is effective for 
negative trapping, where particles are effectively trapped at the device centre.  The device geometry is 
optimized by maximizing the dielectrophoretic force.  
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1   Introduction 
 There is increasing interest in developing integrated 
micro-fluidic systems capable of performing 
manipulation micro size particles. These integrated 
micro-systems made of electrical, mechanical and 
fluidic components have wide applications in areas 
mentioned above. For example, a micro system can 
be used in the molecular analysis of cancer cells 
within a small volume of pathologic fluid to provide 
cancer prognostic information. A critical necessity 
for micro-system used to process cell samples is the 
ability to discriminate and sort cells according to 
characteristic phenotypes [1-3].  

Numerous geometries have been developed to 
separate particles. The simple case is interdigated 
electrodes. These devices have been successfully 
used to in biological fields for separating and 
manipulating cells [1,3,4]. Cascaded structures are 
also found applications in manipulation of biological 
particles [5]. These systems are powerful for 2-D 
analysis. A few 3-D dielectrophorestic microdevices 
have also been developed for trapping biological 
particles [6-8]. A DEP cage was developed by a 
German team for trapping particles and studying cell 
properties [7]. Joel proposed a quadrupole structure 
for trapping of cells [8]. This microelectrode was 
extended to a ring-dot geometry for trapping of a 
single cell [9].  The paired-electrode systems [10,11] 
were developed to successfully herd and transport 
particles.  
This paper is an extension of Joel’s work [8] for 
analysis and development of quadrupole electrode 
devices. First, the electric field distribution and the 
DEP forces of this quodrupole device is derived 
mathematically and the optimum geometry of the 
quadrupole electrode is achieved. Based on this 
optimum geometry, the trapping capacity of the 

device is derived by numerical study of the particle 
trajectory and motion.  
 
2   Theoretical Background 
2.1 Electrical Field Distribution of 
Quadrupole Electrodes 
Suppose the proposed quadrupole electrode is 
composed of 4 parallel infinite electrical wires. Each 
wire is charged with either +Q or –Q, as shown in 
Fig. 1a. As the ratio of wire length to wire diameter 
is sufficiently large, the structure can be simplified 
as a 2-D structure for analysis, as shown in Fig. 1b.  

 
Fig. 1. (a) Schematic of quadrupole electrodes; (b) 2-D 

structure. 
 

From the electromagnetic theory, a charge 
element dq at a point M creates an electric field at a 
point N, which is given by 
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where MNrv  is the vector from point M to point N, 

MNr  is the magnitude of the vector, ε0 is the vacuum 
permittivity. 

The electric field strength is obtained by 
integrating equation 1 along the charge wire 
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  For simplicity, the electric field created by a 
single wire with infinite length is considered and 
shown in Fig. 2. Suppose the electrical charge 
density is λ, then dldq λ= . As the wire is infinite 
and symmetric along r axis, two mirror charges 1dq  
and 2dq  only create a electric field along the r 
direction 
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Fig. 2. Electric field distribution of an infinite charge 
wire. 

 
Suppose the electric charge distributions of these 

four electrodes are ±λ and their coordinates are 
( )ba ±± ,  respectively, as shown in Fig. 3. The 
potentional distribution at a point (x, y) is calculated 
by  
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Fig. 3. Electric charge distribution and coordinates of 
quadrupole electrodes. 

 
The potential distribution is obtained by solving 

equation 6, as shown in Fig. 4. Obviously, the 
potential has 4 peak values, which are at the 
electrode positions. 

 

 
Fig. 4. Potential distribution. 

  
The electrical field is obtained by differentiating 

equation 6, which gives 
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where î  and ĵ  are unit vectors in x and y 
directions. The mesh plot of the electrical field 
distribution is shown in Fig. 5. The electric fields 
near electrodes is higher than other areas. The 
minimum electric field is in the centre of the device. 
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Fig. 5. Electric field distribution. 
 
2.2 DEP forces 
Assume a particle is the proposed quadrupole 
device, the general DEP force is given by 
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where 112
0 10854.8 −−×= Fmε  is the permittivity of 

free space, pε  and mε  are relative permittivities of 
particle and the surrounding medium, R is the 
particle radius. 

 Both x and y components of the DEP force are 
expressed as  
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where Ex,, Ey are x and y components of the electric 
field, and Ex,,x, Ex,,y, Ey,,x, Ey,,y are gradients of electric 
field components. All these formulas are listed in 
Appendix 1. 
 
2.3   Special case 
For simplicity, this part deals with a case near the x 
axis, i.e., y =0 or by << . From equation (A.1), the x 
component of the electric field is zero, or 0=xE . 
So the x component of DEP force in equation 3 can 
be simplified as 
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For the sake of analysis, two non-dimensional 
parameters, β and X, are introduced  

 
a
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where the parameter β is defined as the ratio of 
device width versus the length, and the X is defined 
as the ratio of x component position versus the 
device length. The value X<1 means the area inside 
the trapping device while X>1 is the area outside of 
the trapping device. 

The DEP force is rewritten as using two 
parameters β and X 

( )

342222

2222242

342222

2222242

3
2

])1(2)1[(
])1(223[

])1(2)1[(
])1(223[

2
64

ββ
βββ

ββ
βββ

λ
εε
εε

πε

+++−
++−+−

⋅=

+++−
++−+−

×







+

−
=

XX
XXXXk

XX
XXXX

a
RF

mp

mp

m
xDEP

 (7) 

where 
3

2

2
64









+

−
=

a
Rk

mp

mp

m

λ
εε
εε

πε
  (8) 

Besides physical parameters of particles and 
medium, equation 7 shows the DEP force also 
depends on trapping device geometry and particle 
position, which are represented by β and X 
respectively. Ideally, the stable particle trapping 
position should meet with the condition that the 
DEP force is zero, i.e., (FDEP)x = 0. Solving equation 
5 by letting it equal to zero, three roots are obtained.  

a) Root 1: β = 0 
b) Root 2: X = 0 

c) Root 3: 
3
121 422 βββ +++−

±=X    (9) 

Obviously, root 1 is meaningless as the device 
has 4 electrodes. Root 2 corresponds to the position 
at the centre of the trapping device. Root 3 is a 
function of β, or the device geometry. 
 
2.3.1   Trapping position analysis  
For a simple case, the value β is chosen 1 to address 
the effect of particle position on the DEP force. 
Substitute β =1 into equation 9, the zero DEP force 
position is calculated as 0746.13/44 ±=±=X . This 
means that zero DEP force is outside of the trapping 
device. Therefore, the quadrupole device has 3 zero 
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DEP force positions, one is at the device centre, and 
the other two are at outside of the device. These 
trapping positions may be controlled by the sign of k 
as shown in equation 8. If k <0 or, mp εε < , the 
particles will be trapped at the centre position of X = 
0. This can be regarded as a negative trapping. On 
the other hand, if k >0, or mp εε > ,  the particles 
will be trapped at the outsides of the device, which 
corresponds to the positive trapping. The negative 
trapping will be detailed in the following section. 
 
2.3.2   Negative Trapping 
The above analysis shows that the negative trapping 
is at the vicinity of the device centre. By letting 
X=0, equation 7 is simplified as 
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For the negative trapping, where k is negative 
in equation 10, the particles will be oscillating at the 
device centre (X = 0) if there is no resistant force. 
Generally, the oscillating period varies with the 
product of k and f(β). The higher the value, the 
smaller the oscillating period. Thus, if all the other 
parameters are known, this device could be used as a 
sensor to detect the permeability of particle or 
medium. 
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Fig. 6. The plot of f(β) vs. β. 

 
The value of f(β) against β is plotted and 

shown in Fig. 6. The maximum value of f(β) is 
obtained by solving the differentiating equation  
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d
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particle is subjected to the maximum force. This 
force versus a square quadratic device is given by 
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So compared with a square trapping device, the 
proposed optimum device can increase the trapping 
force around 70%. 
 
 
3   Particle Trajectory 
3.1 Particle trajectory at x-axis 
As the particle is subjected to nonlinear DEP forces, 
it is difficult to get analytical solution. This paper 
developed a numerical method to find the trajectory 
of particle locations. Assume the particle is 
subjected to a damping force which is proportional 
to the particle velocity. The following equations are 
used to calculate particle displacement and velocity.  
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where i is the iterative times, N is the particle 
location, F(N) is the DEP force at the location N, 
and g(X(i)) is the function corresponding to the 
location X(i).  

As discussed in above section, the negative 
trapping region is located at the device centre region 
of 0746.10746.1 <<− X ; while the positive 
trapping region is outside of the trapping device of 

0746.1−<<∞− X or ∞<< X0746.1 . Therefore, if 
the particle is initially stationery, the particles will 
be trapped at the centre point, while the particles 
outside of the centre devices will be pushed away 
from the device. Thus, if the particles are to be 
trapped, they must enter the trapping area with a 
certain speed. Too small or too large initial speeds, 
the particle cannot enter or pass away the trapping 
areas, which can not be effectively trapped. Fig. 7 
shows the particle trajectory of a few particles with 
different initial positions; the velocities of these 
particle are assumed to be zeros. The simulation 
results indicated that only particles within the 
trapping area can be effectively trapped at the centre 
position. However, those particle that are initially at 
outside of the trapping area are pushed away from 
the trapping area and cannot be effectively trapped 
with this device.  
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Fig. 7. Particle trajectory with different initial positions. 
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Fig. 8. Velocity of particles with different initial 
positions. 

 
Velocity profile of these particles at different 

initial positions is shown in Fig. 8. As can be seen 
from this figure, the more far from the central 
position, or the larger X value, the larger velocities 
of the particles. This is because the particle outside 
of the trapping area has larger acceleration and has 
more time to accelerate speed. Except for the 
particle outside of the trapping area (X = -1.2), the 
particle oscillating periods have no obvious 
variance, even though the amplitude varies with 
initial position.  

The effect of particle velocity on the trapping 
effect is shown in Fig. 9. It can be seen from this 
figure that the particles only having appreciate initial 
velocities can be effectively trapped. Those particles 
with much higher or lower velocities cannot enter 
the trapping area.  
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Fig. 9. Particle trajectory at different initial velocities. 
 

Fig. 10 shows the negative and positive trapping. 
Again, negative k value corresponds to negative 
trapping while positive k value is for positive 
trapping. Particles for negative trapping is trapped at 
the device centre while the positive trapping is 
located outside of the trapping device.  

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1.5

-1

-0.5

0

0.5

Time Step 

X
 P

os
iti

on k = - 0.05
k = - 0.1
k = 0.1
k = 0.025

X0 = - 0.6
 ?  =  0.1

 
 

Fig. 10. Negative and positive trapping. 
 
The damping coefficient also plays an important 

role in trapping particles. Fig. 11 shows particle 
trajectory at two typical damping conditions, where 
the particle are projected into the device from initial 
position outside of the trapping device. It can be 
seen from this figure the higher damping will reduce 
the oscillating period and the peak velocity as well.  
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Fig. 11. Particle trajectory at different dampings. 

 
 

3.2 Particle trajectory at arbitrary position 
The particle motion at any arbitrary position will be 
addressed by 2-D plots. Suppose four particles with 
same physical properties are projected into the 
trapping devices from different starting positions, as 
shown in Fig. 12. Coordinates (X0, Y0) represent 
particle initial positions. The particle trajectory is 
shown in this figure. As can be seen from this 
figure, the particle which is close the electrode is 
pushed away from the trapping centre. Other three 
particles, far from the electrodes, are effectively 
trapped in the centre position.  

Fig. 13 shows the effect of particle velocity on 
the trapping effect. Similar to 1-D trapping, the 2-D 
trapping also shows only appropriate velocity can 
contribute to effecting trapping. Particle with too 
large or too small velocities can be trapped in the 
device. 
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Fig. 12. Trajectory of particles with different initial 
positions. 
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Fig. 13. Trajectory of particles with different initial 

velocities. 
 
3.3 Device conceptual design 
Based on the above analysis, a conceptual design of 
the proposed quadrupole electrode device is shown 
in Fig. 14. This is an electrode array comprising of 4 
quadrupole electrode elements. The physical 
parameters for each device are shown in Table 1. 

 

 
Fig. 14. Quadrupole electrode array. 

 
Table 1. Quadrupole electrode device parameters. 

Electrode  
length 

Electrode  
width 

Wire  
diameter 

Wire 
length 

100µm 57.7µm 5µm 60µm 
 

 The proposed device will be fabricated and the 
practical of such device in particle trapping will be 
evaluated in future. 
 
4   Conclusion 
In this paper, a numerical study was presented to 
investigate trapping of particles using negative DEP 
based on a quadrupole microfludic device. The 
device is optimized by maximizing the DEP force. 
The effects of particle initial position and velocity 
on the particle trapping stability are addressed. If the 
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particle is more close to the electrodes, it would be 
hard to be stably trapped. Using this device, 
particles only having appropriate velocities, not too 
large or small, can be effectively trapped. The 
practical trapping device is conceptually designed.  
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Appendix 1. Formulas of electric field components 
and their derivatives. 
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